scholarly journals A Divergence-Form Wave-Induced Pressure Inherent in the Extension of the Eliassen–Palm Theory to a Three-Dimensional Framework for All Waves at All Latitudes

2015 ◽  
Vol 72 (7) ◽  
pp. 2822-2849 ◽  
Author(s):  
Hidenori Aiki ◽  
Koutarou Takaya ◽  
Richard J. Greatbatch

Classical theory concerning the Eliassen–Palm relation is extended in this study to allow for a unified treatment of midlatitude inertia–gravity waves (MIGWs), midlatitude Rossby waves (MRWs), and equatorial waves (EQWs). A conservation equation for what the authors call the impulse-bolus (IB) pseudomomentum is useful, because it is applicable to ageostrophic waves, and the associated three-dimensional flux is parallel to the direction of the group velocity of MRWs. The equation has previously been derived in an isentropic coordinate system or a shallow-water model. The authors make an explicit comparison of prognostic equations for the IB pseudomomentum vector and the classical energy-based (CE) pseudomomentum vector, assuming inviscid linear waves in a sufficiently weak mean flow, to provide a basis for the former quantity to be used in an Eulerian time-mean (EM) framework. The authors investigate what makes the three-dimensional fluxes in the IB and CE pseudomomentum equations look in different directions. It is found that the two fluxes are linked by a gauge transformation, previously unmentioned, associated with a divergence-form wave-induced pressure [Formula: see text]. The quantity [Formula: see text] vanishes for MIGWs and becomes nonzero for MRWs and EQWs, and it may be estimated using the virial theorem. Concerning the effect of waves on the mean flow, [Formula: see text] represents an additional effect in the pressure gradient term of both (the three-dimensional versions of) the transformed EM momentum equations and the merged form of the EM momentum equations, the latter of which is associated with the nonacceleration theorem.

2015 ◽  
Vol 28 (23) ◽  
pp. 9332-9349 ◽  
Author(s):  
Liang Wu ◽  
Zhiping Wen ◽  
Renguang Wu

Abstract Part I of this study examined the modulation of the monsoon trough (MT) on tropical depression (TD)-type–mixed Rossby–gravity (MRG) and equatorial Rossby (ER) waves over the western North Pacific based on observations. This part investigates the interaction of these waves with the MT through a diagnostics of energy conversion that separates the effect of the MT on TD–MRG and ER waves. It is found that the barotropic conversion associated with the MT is the most important mechanism for the growth of eddy energy in both TD–MRG and ER waves. The large rotational flows help to maintain the rapid growth and tilted horizontal structure of the lower-tropospheric waves through a positive feedback between the wave growth and horizontal structure. The baroclinic conversion process associated with the MT contributes a smaller part for TD–MRG waves, but is of importance comparable to barotropic conversion for ER waves as it can produce the tilted vertical structure. The growth rates of the waves are much larger during strong MT years than during weak MT years. Numerical experiments are conducted for an idealized MRG or ER wave using a linear shallow-water model. The results confirm that the monsoon background flow can lead to an MRG-to-TD transition and the ER wave amplifies along the axis of the MT and is more active in the strong MT state. Those results are consistent with the findings in Part I. This indicates that the mean flow of the MT provides a favorable background condition for the development of the waves and acts as a key energy source.


2018 ◽  
Vol 839 ◽  
pp. 408-429 ◽  
Author(s):  
Jim Thomas ◽  
Oliver Bühler ◽  
K. Shafer Smith

Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.


Author(s):  
Davis W. Hoffman ◽  
Laura Villafañe ◽  
Christopher J. Elkins ◽  
John K. Eaton

Abstract Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.


2020 ◽  
Vol 17 (5) ◽  
pp. 1221-1236
Author(s):  
Hui-Huang Fang ◽  
Shu-Xun Sang ◽  
Shi-Qi Liu

Abstract The three-dimensional (3D) structures of pores directly affect the CH4 flow. Therefore, it is very important to analyze the 3D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier. The result shows that the equivalent radius of pores and throats are 1–16 μm and 1.03–8.9 μm, respectively, and the throat length is 3.28–231.25 μm. The coordination number of pores concentrates around three, and the intersection point between the connectivity function and the X-axis is 3–4 μm, which indicate the macro-pores have good connectivity. During the single-channel flow, the pressure decreases along the direction of CH4 flow, and the flow velocity of CH4 decreases from the pore center to the wall. Under the dual-channel and the multi-channel flows, the pressure also decreases along the CH4 flow direction, while the velocity increases. The mean flow pressure gradually decreases with the increase of the distance from the inlet slice. The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane, while it is relatively large in the direction perpendicular to the bedding plane. The mean flow velocity in the direction horizontal to the bedding plane (Y-axis) is the largest, followed by that in the direction horizontal to the bedding plane (X-axis), and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.


2012 ◽  
Vol 699 ◽  
pp. 320-351 ◽  
Author(s):  
Johan Malm ◽  
Philipp Schlatter ◽  
Dan S. Henningson

AbstractDominant frequencies and coherent structures are investigated in a turbulent, three-dimensional and separated diffuser flow at $\mathit{Re}= 10\hspace{0.167em} 000$ (based on bulk velocity and inflow-duct height), where mean flow characteristics were first studied experimentally by Cherry, Elkins and Eaton (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811) and later numerically by Ohlsson et al. (J. Fluid Mech., vol. 650, 2010, pp. 307–318). Coherent structures are educed by proper orthogonal decomposition (POD) of the flow, which together with time probes located in the flow domain are used to extract frequency information. The present study shows that the flow contains multiple phenomena, well separated in frequency space. Dominant large-scale frequencies in a narrow band $\mathit{St}\equiv fh/ {u}_{b} \in [0. 0092, 0. 014] $ (where $h$ is the inflow-duct height and ${u}_{b} $ is the bulk velocity), yielding time periods ${T}^{\ensuremath{\ast} } = T{u}_{b} / h\in [70, 110] $, are deduced from the time signal probes in the upper separated part of the diffuser. The associated structures identified by the POD are large streaks arising from a sinusoidal oscillating motion in the diffuser. Their individual contributions to the total kinetic energy, dominated by the mean flow, are, however, small. The reason for the oscillating movement in this low-frequency range is concluded to be the confinement of the flow in this particular geometric set-up in combination with the high Reynolds number and the large separated zone on the top diffuser wall. Based on this analysis, it is shown that the bulk of the streamwise root mean square (r.m.s.) value arises due to large-scale motion, which in turn can explain the appearance of two or more peaks in the streamwise r.m.s. value. The weak secondary flow present in the inflow duct is shown to survive into the diffuser, where it experiences an imbalance with respect to the upper expanding corners, thereby giving rise to the asymmetry of the mean separated region in the diffuser.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Anna E. Craig ◽  
John O. Dabiri ◽  
Jeffrey R. Koseff

Experimental data are presented for large arrays of rotating, variable-height cylinders in order to study the dependence of the three-dimensional mean flows on the height heterogeneity of the array. Elements in the examined arrays were spatially arranged in the same staggered paired configuration, and the heights of each element pair varied up to ±37.5% from the mean height (kept constant across all arrays), such that the arrays were vertically structured. Four vertical structuring configurations were examined at a nominal Reynolds number (based on freestream velocity and cylinder diameter) of 600 and nominal tip-speed ratios of 0, 2, and 4. It was found that the vertical structuring of the array could significantly alter the mean flow patterns. Most notably, a net vertical flow into the array from above was observed, which was augmented by the arrays' vertical structuring, showing a 75% increase from the lowest to highest vertical flows (as evaluated at the maximum element height, at a single rotation rate). This vertical flow into the arrays is of particular interest as it represents an additional mechanism by which high streamwise momentum can be transported from above the array down into the array. An evaluation of the streamwise momentum resource within the array indicates up to a 56% increase in the incoming streamwise velocity to the elements (from the lowest to highest ranking arrays, at a single rotation rate). These arrays of rotating cylinders may provide insight into the flow kinematics of arrays of vertical axis wind turbines (VAWTs). In a physical VAWT array, an increase in incoming streamwise flow velocity to a turbine corresponds to a (cubic) increase in the power output of the turbine. Thus, these results suggest a promising approach to increasing the power output of a VAWT array.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


2000 ◽  
Vol 122 (4) ◽  
pp. 593-603 ◽  
Author(s):  
Allan G. van de Wall ◽  
Jaikrishnan R. Kadambi ◽  
John J. Adamczyk

The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. The upstream vortical structures or disturbances are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (K) associated with the incoming disturbance. A transport model was developed to take this process into account in the computation of time-averaged multistage turbomachinery flows. The model was applied to compressor and turbine geometry. For compressors, the K associated with upstream two-dimensional wakes and three-dimensional tip clearance flows is reduced as a result of their interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the K associated with upstream two-dimensional wakes and three-dimensional tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the K by inviscid effects but result in a substantial loss. Two-dimensional wakes and three-dimensional tip clearance flows passing through a turbine blade row result in a larger loss than if these disturbances were mixed-out prior to entering the blade row. [S0889-504X(00)01804-3]


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


Sign in / Sign up

Export Citation Format

Share Document