Effects of pulsed ultrasound treatment on the physicochemical and textural properties of chicken myofibrillar protein gel

2021 ◽  
pp. 108201322110113
Author(s):  
Xin Hu ◽  
Jingyu Wang ◽  
Lilu Sun ◽  
Wanpeng Zhang ◽  
Yuan Zhang ◽  
...  

This study explored the effects of varying the time of pulsed ultrasound (PUS) treatment on the physicochemical and textural properties of chicken myofibrillar protein (CMP) gel. The solubility rapidly increased at ≤ 6 min and then steadily decreased, while the particle size showed the opposite trend. At longer PUS treatment times, the total sulfhydryl(–SH)and reactive SH content of CMP gel all decreased. The absolute value of the zeta potential and surface hydrophobicity at 6 min were higher. The most hydrogen bonds were formed. G′ and G″ were also optimal, indicating that a more viscoelastic gel was formed. Meanwhile, the textural properties (including hardness and springiness) were significantly improved by PUS. These findings show that PUS significantly affected the physicochemical and textural properties of CMP gel, and at 6 min, the best gel hardness and springiness were achieved.

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 120
Author(s):  
Zahra Siyar ◽  
Ali Motamedzadegan ◽  
Jafar Mohammadzadeh Milani ◽  
Ali Rashidinejad

In this study, the encapsulation of saffron extract (SE) was examined at four various concentrations of soy lecithin (0.5%–4% w/v) and constant concentration of SE (0.25% w/v). Particle size and zeta potential of liposomes were in the range of 155.9–208.1 nm and −34.6–43.4 mV, respectively. Encapsulation efficiency was in the range of 50.73%–67.02%, with the stability of nanoliposomes in all treatments being >90%. Encapsulated SE (2% lecithin) was added to ricotta cheese at different concentrations (0%, 0.125%, 1%, and 2% w/v), and physicochemical and textural properties of the cheese were examined. Lecithin concentration significantly (p ≤ 0.05) affected the particle size, zeta potential, stability, and encapsulation efficiency of the manufactured liposomes. In terms of chemical composition and color of the functional cheese, the highest difference was observed between the control cheese and the cheese enriched with 2% liposomal encapsulated SE. Hardness and chewiness increased significantly (p ≤ 0.05) in the cheeses containing encapsulated SE compared to the control cheese. However, there was no significant difference in the case of adhesiveness, cohesiveness, and gumminess among different cheeses. Overall, based on the findings of this research, liposomal encapsulation was an efficient method for the delivery of SE in ricotta cheese as a novel functional food.


2021 ◽  
Vol 251 ◽  
pp. 02043
Author(s):  
Yingchang Li ◽  
Yuanyuan Li ◽  
Qiuying Li ◽  
Yanfang Lv ◽  
Shumin Yi

The effects of different concentrations of gallic acid (0 mg/g, 1 mg/g, 2 mg/g, 4 mg/g, and 6 mg/g) on the physicochemical properties of Lateolabrax japonicas myofibrillar protein were studied with 400 W ultrasound. The results showed that gallic acid decreased the particle size, total sulfhydryl group, carbonyl and dimer tyrosine content and Ca2+-ATPase activity (P<0.05) of myofibrillar protein, however, increased the zeta potential. Ultrasonic wave could cooperate with gallic acid to slow down protein oxidation and make the protein solution system more stable. When the concentration of gallic acid was 2 mg/g, the indicators of protein solution were most favorable, which improved the properties of protein.


Author(s):  
Cuiping Yu ◽  
Fan Wu ◽  
Yue Cha ◽  
Yuting Qin ◽  
Ming Du

Abstract Oyster protein isolate (OPI) suspensions (6.19 % ± 0.82 %, w/v) were treated by high-pressure homogenization (HPH) at 0 (control), 20, 40, 60, 80 or 100 MPa for three cycles. Protein profiles, secondary structure, free sulfhydryl, surface hydrophobicity, particle size distribution, zeta-potential, solubility, water and oil holding capacity (OHC), emulsifying and foaming properties of the obtained suspensions were analyzed. The results showed that HPH treatment did not cause changes in protein profiles of OPI, but caused changes in secondary structure, content of α-helix decreased but content of β-turn and random coil increased significantly (P < 0.05). Free sulfhydryl and surface hydrophobicity all increased significantly (P < 0.05) after HPH treatment, indicating that tertiary and quaternary structures changed. Functional properties of OPI significantly (P < 0.05) improved after HPH treatment, such as zeta-potential (from −12.67 to −33.57 mV), solubility (from 20.24 % to 57.99 %), OHC (from 981.77 % to 1229.40 %), foaming ability (from 17.50 % to 35.00 %), foaming stability (from 44.49 % to 66.60 %), emulsifying activity index (from 8.87 to 17.06 m2/g) and emulsion stability index (from 14.65 to 41.68 min). At 60 MPa and 80 MPa, the improvements were more remarkable. However, HPH treatment significantly (P < 0.05) decreased particle size (from 200–500 nm to 0–200 nm) and water holding capacity (from 341.15 % to 216.96 %). These improvements were closely related to structural changes and reduction of particle size. Application of different pressures affected functional properties of OPI. These results could provide information for determining HPH applying condition in OPI modification.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3344 ◽  
Author(s):  
Yue Cha ◽  
Fan Wu ◽  
Henan Zou ◽  
Xiaojie Shi ◽  
Yidi Zhao ◽  
...  

The effects of HPH (high-pressure homogenization) pre-treatment on the functional properties of OPIH (oyster protein isolates hydrolysates) were studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles, solubility, particle size distribution, zeta potential, surface hydrophobicity, emulsifying activity index and microstructure of emulsions were analyzed. Results indicated that HPH pre-treatment increased the accessibility of OPI to trypsin hydrolysis, resulting in decease in particle size, increase in solubility, absolute zeta potential, surface hydrophobicity and emulsifying activity index. In addition, HPH pre-treated OPIH emulsions became more uniform and the particle size of droplets decreased. These results revealed that HPH pre-treatment has the potential to modify the functional properties of OPIH.


2008 ◽  
Vol 373-374 ◽  
pp. 670-673
Author(s):  
X.J. Wang ◽  
Dong Sheng Zhu ◽  
X.F. Li ◽  
Nan Wang

In this paper, by measurement of zeta potential and particle size the surface modification of Cu nanoparticles in water was investigated at different pH values and different concentration of sodium dodecylbenzenesulfonate (SDBS) dispersant. The results show that the absolute value of zeta potential has very corresponding relation with particle size, and that the higher the absolute value of zeta potential and the smaller of the particle size are, the better dispersion and stability of copper nano-suspensions system is. It is also found that SDBS can significantly affect the value of zeta potential and particle size by electrostatic repulsions, which lead to the enhancement of the stability of the Cu suspensions, and the optimizing concentration for SDBS in 0.1% copper nano-suspensions is 0.07%, which have the best disperse results.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Yuting Wang ◽  
Wenxiang Luo ◽  
Yonggang Tu ◽  
Yan Zhao

Preserved eggs are prone to lose water during storage, which causes the preserved eggs to shrink and have poor taste, bad flavor, and reduced quality. By studying a degradable coating agent and applying it to preserved eggs, we explored its effect on the quality of preserved eggs during storage. In this paper, the structure and performance of gelatin film (GF), gelatin–bacterial cellulose film (GBF), and gelatin–bacterial cellulose–MgO nanocomposite film (GBMF) were explored by adding bacterial cellulose (BC) and MgO nanoparticles to gelatin. The results showed that the BC solution increased the particle size and absolute value of the zeta potential. The cross-sectional microstructure of the film showed fewer and smaller pores. The water vapor permeability (WVP) decreased, and the elongation at break (EB) increased significantly. The addition of MgO nanoparticles increased the particle size and reduced the absolute value of the zeta potential. The cross section of the film became denser and more uniform by adding MgO nanoparticles, and the surface hydrophobicity of the film increased, and the EB decreased. After coating the preserved eggs with these films, the weight loss rate, the content of total volatile base nitrogen (TVB-N), and the hardness were lower than that of uncoated preserved eggs. The pH of the uncoated preserved eggs also dropped faster than the coated preserved eggs. Moreover, the preserved egg coated with GBMF had the lowest weight loss rate and the highest sensory score. It can be seen that these three films had a certain preservation effect on preserved eggs, and the GBMF had the best preservation effect.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Sign in / Sign up

Export Citation Format

Share Document