Investigation of the bonding strength of the stainless steel 316L/polyurethane/stainless steel 316L tri-layer composite produced by the warm rolling process

2018 ◽  
Vol 22 (3) ◽  
pp. 728-742
Author(s):  
Mehran Kamali Andani ◽  
Habib Daneshmanesh ◽  
Seyed Ahmad Jenabali Jahromi

In this study, a metal/polymer tri-layer composite was produced by direct adhesion (without adhesive), and mechanical locks were created using the warm rolling process. The effect of the process parameters including preheating temperature, rolling speed, thickness reduction, surface roughness, and the orientation of the surface scratches on the bond strength between layers was investigated. The results indicated that the suitable polymer fluidity and penetration, to provide stronger mechanical locks and higher bond strengths, could be achieved at an optimum preheating temperature and a rolling speed of 240°C and 36 r/min, respectively. In addition, the most appropriate surface pretreatment was obtained in the wire brush in the rolling direction mode with the surface roughness of 0.65 µm, so that the failure mechanism in this case was cohesive and the optimum thickness reduction was achieved at 40%. Furthermore, the mechanical properties of the sandwich sheet with highest bonding strength were evaluated.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1376
Author(s):  
Alex Quok An Teo ◽  
Lina Yan ◽  
Akshay Chaudhari ◽  
Gavin Kane O’Neill

Additive manufacturing of stainless steel is becoming increasingly accessible, allowing for the customisation of structure and surface characteristics; there is little guidance for the post-processing of these metals. We carried out this study to ascertain the effects of various combinations of post-processing methods on the surface of an additively manufactured stainless steel 316L lattice. We also characterized the nature of residual surface particles found after these processes via energy-dispersive X-ray spectroscopy. Finally, we measured the surface roughness of the post-processing lattices via digital microscopy. The native lattices had a predictably high surface roughness from partially molten particles. Sandblasting effectively removed this but damaged the surface, introducing a peel-off layer, as well as leaving surface residue from the glass beads used. The addition of either abrasive polishing or electropolishing removed the peel-off layer but introduced other surface deficiencies making it more susceptible to corrosion. Finally, when electropolishing was performed after the above processes, there was a significant reduction in residual surface particles. The constitution of the particulate debris as well as the lattice surface roughness following each post-processing method varied, with potential implications for clinical use. The work provides a good base for future development of post-processing methods for additively manufactured stainless steel.


2016 ◽  
Vol 840 ◽  
pp. 315-320 ◽  
Author(s):  
Afifah Mohd Ali ◽  
Norazharuddin Shah Abdullah ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The purpose of this research is to find the effects of cutting speed on the performance of the ZTA ceramic cutting tool. Three types of ZTA tools used in this study which are ZTA-MgO(micro), ZTA-MgO(nano) and ZTA-MgO-CeO2. Each of them were fabricated by wet mixing the materials, then dried at 100°C before crushed into powder. The powder was pressed into rhombic shape and sintered at 1600°C at 4 hours soaking time to yield dense body. To study the effect of the cutting speed on fabricated tool, machining was performed on the stainless steel 316L at 1500 to 2000 rpm cutting speed. Surface roughness of workpiece was measured and the tool wears were analysed by using optical microscope and Matlab programming where two types of wear measured i.e. nose wear and crater wear. Result shows that by increasing the cutting speed, the nose wear and crater wear increased due to high abrasion. However, surface roughness decreased due to temperature rise causing easier chip formation leaving a good quality surface although the tool wear is increased.


2018 ◽  
Vol 46 (4) ◽  
pp. 20170140 ◽  
Author(s):  
Derahman Nur Aqilah ◽  
Ab Karim Mohd Sayuti ◽  
Yusof Farazila ◽  
Dambatta Yusuf Suleiman ◽  
Mohd Amran Nor Amirah ◽  
...  

2020 ◽  
Vol 63 ◽  
pp. 98-111
Author(s):  
S. Kathiresan ◽  
B. Mohan

In this experimental work, Magneto rheological abrasive flow nano finishing processes were conducted on AISI Stainless steel 316L work pieces that are widely used in medical implants. The focus of the present study is to assess the effect of input variables namely the volume percentage of iron (Fe) particles, silicon carbide (SiC) abrasive particles in the Magneto rheological abrasive fluid and number of cycles on the final surface roughness at nano level as well as the material removal rate. The volume % of Fe particles were taken as 20, 25 and 30 and the volume % of SiC particles were taken as 10, 15 and 20. The different number of cycles considered for the study is 100,200 and 300. There are 20 different set of experiments with different combinations of input variables mentioned have been carried out based on the experimental design derived through central composite design technique. The minimum surface roughness observed is 23.34 nanometer (nm) from the initial surface roughness of 1.92 micro meter (µm). Towards optimizing the input process variables, a multi objective optimization was carried out by using response surface methodology.


Author(s):  
Kathiresan Sundararaj ◽  
Mohan Bangaru

In this present study, the nano finishing of stainless steel 316L (SS316L) was obtained by means of magneto rheological abrasive flow finishing (MRAFF) process by varying the amount of current to the electromagnet. The MRAFF process is an advanced machining process in which the metal removal process is effectively controlled by means of the rheological property of the magneto rheological abrasive (MRA) fluid. After the finishing process, the surface roughness profiles and parameter were obtained with the help of Talysurf coherence correlation interferometer (CCI). Stainless steel 316L sample surfaces obtained by means of MRAFF process with different nano roughness values are utilized to study its biocompatibility by an in vitro study to examine the cell viability, proliferation of a fibroblast cell line (NIH-3T3) by means of MTT assay. The optical density (OD) values were utilized to determine the amount of viable cells. The cell proliferations studies were conducted and observed for 1, 3 and 7 days of incubation period with respect to the absorbance value of the samples. The protein adsorption studies are also made by using bicinchoninic acid assay (BCA) kit. The characters of biocompatibility are correlated with the nano scale surface roughness parameters of the SS316L samples.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Grzegorz Struzikiewicz ◽  
Wojciech Zębala ◽  
Andrzej Matras ◽  
Magdalena Machno ◽  
Łukasz Ślusarczyk ◽  
...  

This paper presents the characteristic of 316L steel turning obtained by 3D printing. The analysis of the influence of turning data on the components of the total cutting force, surface roughness and the maximum temperature values in the cutting zone are presented. The form of chips obtained in the machining process was also analyzed. Statistical analysis of the test results was developed using the Taguchi method.


2018 ◽  
Vol 791 ◽  
pp. 116-122
Author(s):  
K. Kamdani ◽  
A.A. Hamsah ◽  
N.H. Rafai ◽  
M.Z. Rahim ◽  
C.K. Wong ◽  
...  

Drilling is the metal cutting process that are widely used in industrial sector such as in aerospace, automotive and manufacturing to produce a various of durable parts. Stainless steels in general are regarded as difficult to machine materials due to their high tendency to work harden; their toughness and relatively low thermal conductivity. In this research, the experimental setup for the effect of various parameters on drill performance in term of cutting force and surface roughness. Stainless steel 316L used as workpiece and uncoated tungsten carbide drill bit as the tool. From the experimental investigation, the results show that internal coolant with helix angle of 40 and feed rate of 0.1 mm/rev condition is the best drilling condition in term of thrust force and surface roughness. By observation on experiment, MQL coolant condition give highest thrust force while internal coolant is best condition to have most minimum force. For internal coolant, MQL and external supply, the optimum helix angle to obtain low surface roughness is 15° and 40°.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781401985099 ◽  
Author(s):  
H Abdelrahim ◽  
HB Mohamed ◽  
Peiqing La ◽  
Wei Fuma ◽  
Fuling Ma ◽  
...  

304 stainless steels were prepared by aluminothermic reaction method; first steels are annealed at 1000°C and then rolled at 700°C for different deformation. The microstructures evolution and mechanical properties were distinguished in details. It was found that the steel contains nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to a thickness reduction of 30%, 50%, and 70%, the mechanical properties of the rolled steels were substantially increased, as the deformation increased from 30% to 50%, the tensile strength increased from 650 to 1110 MPa, the yield strength increased from 400 to 665 MPa, and the elongation increased from 8% to 8.5%.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2522 ◽  
Author(s):  
Ahmed Elkaseer ◽  
Ali Abdelaziz ◽  
Mohammed Saber ◽  
Ahmed Nassef

This study aims to investigate chip formation and surface generation during the precision turning of stainless steel 316L samples. A Finite Element Method (FEM) was used to simulate the chipping process of the stainless steel but with only a restricted number of process parameters. A set of turning tests was carried out using tungsten carbide tools under similar cutting conditions to validate the results obtained from the FEM for the chipping process and at the same time to experimentally examine the generated surface roughness. These results helped in the analysis and understanding the chip formation process and the surface generation phenomena during the cutting process, especially on micro scale. Good agreement between experiments and FEM results was found, which confirmed that the cutting process was accurately simulated by the FEM and allowed the identification of the optimum process parameters to ensure high performance. Results obtained from the simulation revealed that, an applied feed equals to 0.75 of edge radius of new cutting tool is the optimal cutting conditions for stainless steel 316L. Moreover, the experimental results demonstrated that in contrast to conventional turning processes, a nonlinear relationship was found between the feed rate and obtainable surface roughness, with a minimum surface roughness obtained when the feed rate laid between 0.75 and 1.25 times the original cutting edge radius, for new and worn tools, respectively.


2022 ◽  
Author(s):  
Xiaoshuang Luo ◽  
Shengpeng Zhan ◽  
Dan Jia ◽  
Jiesong Tu ◽  
Yinhua Li ◽  
...  

Abstract Ultrasonic surface rolling (USR) process is a novel surface strengthening technique based on the tool head's high-frequency impact on the workpiece. USR can cause severe plastic deformation on the superficial surface of metal material, and greatly improving the mechanical properties of the material. This paper elucidates the effects of USR passes on the surface roughness, sample height, microstructure, microhardness, residual stress, and tribological properties of 4Cr13 stainless steel. The results revealed that multiple USR treatments refined the near-surface layer grain of the sample. Compared with untreated sample, USR treatments significantly improved the surface roughness and microhardness of the samples. Obvious compressive residual stress and plastic deformed with a maximum value of about -723 MPa and a depth of about 229 μm were also introduced into the sample surface. Under a dry friction environment, the samples that underwent the USR treatments exhibited significantly enhanced wear resistance, and six rolling passes were found to be the most suitable treatment.


Sign in / Sign up

Export Citation Format

Share Document