The study of hydrophobicity and oleophilicity of 3D weft-knitted spacer fabrics integrated with silica aerogels

2021 ◽  
pp. 152808372110290
Author(s):  
Syed Rashedul Islam ◽  
Abeer Alassod ◽  
Tayyab Naveed ◽  
Hewan Dawit ◽  
Khalil Ahmed ◽  
...  

The interest in multifunctional textile materials has been increased due to the health and safety measures of living beings, especially in severe conditions. Therefore, this study investigated the hydrophobicity, oil sorption capacity, and bending properties of untreated or uncoated and treated or coated 3D weft-knitted spacer fabric samples (92% polyester/8% spandex), i.e. sample 1, sample 2, and sample 3, having thicknesses of 2 mm (300 gm−2), 3 mm (350 gm−2), and 4 mm (540 gm−2), with silica aerogels (SAs) through the sol-gel method. SEM, FTIR-ATR, and surface roughness test of fabric samples were analyzed to comprehend the influence of SAs. The experimental results revealed the excellent hydrophobicity and oleophilicity of all the treated 3D weft-knitted spacer fabric samples, providing a higher water contact angle (CA) 142 ± 0.84° and an oil sorption capacity 7.51 ± 0.08g/g and 6.88 ± 0.06g/g for vegetable oil and engine oil, especially of sample 2 owing to the most silica particles. The statistical analysis also demonstrated a significant performance (P < 0.05) of treated spacer fabric samples at the 0.05 level. Thus, these fabrics are suitable for an industrial application of hydrophobic and oleophilic properties.

Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 140 ◽  
Author(s):  
Augustine Ifelebuegu ◽  
Egetadobobari Lale ◽  
Fredrick Mbanaso ◽  
Stephen Theophilus

The oil industry is plagued with regular incidences of spills into the environment, causing environmental damage to flora and fauna, especially in marine environments where spills easily travel long distances from their sources. This study was carried out to investigate a simple two-step process for the conversion of waste cigarette filters into a superhydrophobic and oleophilic sorbent for application in oil/water separation and spill clean-up. Ultrasonically cleaned filters were surface modified by chemical vapour deposition using methyltrichlorosilane. The results show that the functionalised waste filters achieved superhydrophobic properties with a water contact angle of 154 ± 3.5°, adsorbing 16 to 26 times their weights in various oils, which is a better oil sorption performance than those of commercially available non-woven polypropylene adsorbents. Also, the sorption capacity did not significantly deteriorate after 20 cycles of reuse, with up to 75% sorption capacity retained. The surface modified filters demonstrated excellent water repellency, oil sorption, and recyclability showing their potential application for full scale oil spill clean-up.


2016 ◽  
Vol 87 (12) ◽  
pp. 1481-1493 ◽  
Author(s):  
Yadie Yang ◽  
Hong Hu

In this study, a three-layered composite structure based on spacer fabric was designed for absorbent wound dressings. The fabrication and selection of spacer fabrics were discussed in Part I. In this part, two selected spacer fabrics were further modified by covering a polyurethane or a polystyrene electrospun nanofibrous membrane onto their outer layer surface to form the final spacer fabric-based dressing products. In order to confirm the performance of these new spacer fabric-based dressings, the comparisons were conducted with three types of commercial wound dressings. The comparison indicators included the water contact angle, wettability, absorbency, air permeability and water vapor transmission rate. The results showed that in addition to very good water vapor and air permeability, the developed spacer fabric-based dressings had better absorbing properties than commercial foam dressings. Furthermore, their wettability was also good for application as wound dressings. The study has paved a new way to produce advanced wound dressings using three-dimensional textile structures.


2019 ◽  
Vol 14 ◽  
pp. 155892501986644 ◽  
Author(s):  
Syed Rashedul Islam ◽  
Weidong Yu ◽  
Tayyab Naveed

Textile clothing coated with silica aerogels has the potential of thermal insulation performance for heating and cooling. This work investigated the thermal isolation properties of untreated and treated three-layered weft-knitted spacer fabrics with different thicknesses (2 mm, 3 mm, and 4 mm) by using silica aerogels. Three samples of spacer fabrics (300GSM, 350GSM, 540GSM) were coated with nanoporous silica aerogel at a 26°C temperature and then kept for aging, exchanging the solvent, surface modification. The characteristics, for example, thermal resistance, thermal conductivity, yarn arrangement angle, porosity, and air permeability of spacer fabric samples, were investigated. Scanning electron microscopy analysis and Fourier transform infrared spectroscopy–attenuated total reflection test were conducted to explore the surface morphology and surface changes initiated by the silica coating. The experimental results indicated that the treated weft-knitted spacer fabrics with 350GSM have a higher thermal resistance of 0.09131 m2 K W−1, higher porosity ratio, higher air permeability, higher arrangement angle, and lower density. The statistical analysis also verified the significant performance (p = 0.000) of treated fabric samples at the 0.05 level.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1935 ◽  
Author(s):  
Lixiao Zhu ◽  
Yali Wang ◽  
Suping Cui ◽  
Feihua Yang ◽  
Zuoren Nie ◽  
...  

The silica aerogels were prepared via a sol-gel technique and ambient pressure drying by using industrial solid wastes, dislodged sludges, as raw materials. A strategy was put forward to reduce the corrosion of equipment during the drying procedure. The pore structure, hydrophobicity, and thermal insulation property of the obtained samples were investigated in detail. The results show that the corrosion can be effectively avoided by using an equimolar mixture of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDS) as silylation agents. At a Si:TMCS:HMDS molar ratio of 1:0.375:0.375, the silica aerogels possess a desirable pore structure with a pore volume of 3.3 ± 0.1 cm3/g and a most probable pore size of 18.5 nm, a high hydrophobicity with a water contact angle of 144.2 ± 1.1°, and a low thermal conductivity of 0.031 ± 0.001 W/(m∙K).


2012 ◽  
Vol 98 ◽  
pp. 166-176 ◽  
Author(s):  
I. Uzunov ◽  
S. Uzunova ◽  
D. Angelova ◽  
A. Gigova

2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


2021 ◽  
Vol 11 (22) ◽  
pp. 11044
Author(s):  
Violeta Purcar ◽  
Valentin Rădițoiu ◽  
Alina Rădițoiu ◽  
Florentina Monica Raduly ◽  
Georgiana Cornelia Ispas ◽  
...  

In this research, we report a simple and inexpensive way to prepare transparent and hydrophobic hybrid coatings through deposition of different silica materials on polyvinyl chloride (PVC) substrates. The silica materials were prepared using an acid-catalyzed sol–gel method at room temperature (25 ± 2 °C), using alkoxysilanes: tetraethoxysilane (TEOS), as the silica source, and ethoxydimethylvinylsilane (DMVES), triethoxyoctylsilane (OTES), and trimethoxyhexadecylsilane (HDTMES), as modifier agents. The obtained materials were characterized (either as powders or as thin films) by Fourier-transform infrared spectroscopy (FTIR), UV/Vis spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and water contact-angle measurements. UV/Vis spectra showed that the PVC substrate coated with the silica material containing TEOS/DMVES/OTES had a transmittance of about 90% in the wavelength range of 650–780 nm. The water contact angles increased from 83° for uncoated PVC substrate to ~94° for PVC substrates coated with the sol–gel silica materials. These PVC films with hybrid silica coatings can be used as the materials for outdoor applications, such as energy-generating solar panel window blinds or PVC clear Windmaster outdoor blinds.


2015 ◽  
Vol 15 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Xiaoying Li ◽  
Gaoming Jiang ◽  
Xiaolin Nie ◽  
Pibo Ma ◽  
Zhe Gao

AbstractThis paper introduces a knitting technique for making innovative curved three-dimensional (3D) spacer fabrics by the computer flat-knitting machine. During manufacturing, a number of reinforcement yarns made of aramid fibres are inserted into 3D spacer fabrics along the weft direction to enhance the fabric tensile properties. Curved, flat-knitted 3D spacer fabrics with different angles (in the warp direction) were also developed. Tensile tests were carried out in the weft and warp directions for the two spacer fabrics (with and without reinforcement yarns), and their stress–strain curves were compared. The results showed that the reinforcement yarns can reduce the fabric deformation and improve tensile stress and dimensional stability of 3D spacer fabrics. This research can help the further study of 3D spacer fabric when applied to composites.


2021 ◽  
pp. 004051752110466
Author(s):  
Tong Yang ◽  
Min Luo ◽  
Zhuanyong Zou ◽  
Pibo Ma

The surface membrane plays a vital role in bearing loads of flexible inflatable composites. In this work, the mechanical properties of the upper and lower surfaces of inflatable composites and spacer fabrics were studied. It focused on the changes in mechanical properties of surfaces of spacer fabrics with different structures after coating and damage characteristics. The results show that the PVC resin improves the mechanical properties of the surface, which penetrates into the structure to make the yarns bond to each other and adhere to the resin on the surface. And compared with knitted structures, composite membranes with a woven structure have the characteristics of specific strength. This provides data accumulation for performance research of flexible inflatable composites, finite element calculation analysis, and the experimental reference for broadening the application in military pontoons and marching tents.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


Sign in / Sign up

Export Citation Format

Share Document