scholarly journals Aerodynamics of MAV rotors in ground and corner effect

2019 ◽  
Vol 11 ◽  
pp. 175682931986159
Author(s):  
S Prothin ◽  
C Fernandez Escudero ◽  
N Doué ◽  
T Jardin

The work presented in this paper is part of a project called ARChEaN (Aerodynamic of Rotors in Confined ENvironment) whose objective is to study the interactions of a micro drone rotor with its surroundings in the case of flight in enclosed environments such as those encountered, for example, in archeological exploration of caves. To do so the influence of the environment (walls, ground, ceiling, etc) on the rotor’s aerodynamic performance as well as on the flow field between the rotor and the surroundings is studied. This paper focuses on two different configurations, flight near the ground and flight near a corner (wall and ground), and the results are analyzed and compared to a general free flight case (i.e. far away from any obstacle). In order to carry out this analysis both numerical and experimental approaches are conducted. The objective is to validate the numerical model with the results obtained experimentally and to benefit from the advantages of both approaches in terms of flow analysis. This research work will provide knowledge on how to operate these systems as to minimize the possible negative environment disturbances, reduce power consumption and predict the micro drone’s behaviour during enclosed flights.

Author(s):  
A. Tourlidakis ◽  
K. Vafiadis ◽  
V. Andrianopoulos ◽  
I. Kalogeropoulos

Many researchers proposed methods for improving the efficiency of small Horizontal Axis Wind Turbines (HAWTs). One of the methods developed to increase the efficiency of HAWTs and to overcome the theoretical Betz limit is the introduction of a converging – diverging casing around the turbine. To further improve the performance of the diffuser a flange is placed at its outlet, which smoothes the flow along the diffuser interior, allowing larger diffusion angles to be utilized. The purpose of this research work is the aerodynamic design and computational analysis of such an arrangement with the use of Computational Fluid Dynamics (CFD). First, a HAWT rotor rotating at 600 RPM was designed with the use of the Blade Element Momentum (BEM) method. The three rotor blades are constructed using the NREL airfoil sections family S833, S834 and S835. The power coefficient of the rotor was optimised in a wind speed range of 5 – 10 m/s, with a maximum value of 0.45 for a wind speed of 7m/s. A full three-dimensional CFD analysis was carried out for the modeling of the flow around the rotor and through the flanged diffuser. The computational domain consisted of two regions with different frames of reference (a stationary and a rotating). The rotating frame rotates at 600 RPM and includes the rotor with the blades. All the simulations were performed using the commercial CFD software package ANSYS CFX. The Shear Stress Transport turbulence model was used for the simulations. Detailed flow analysis results are presented, dealing with the various investigated test cases, a) isolated turbine rotor, b) diffuser without the presence of the turbine, and c) the full turbine – diffuser arrangement for different flange heights and wind speeds. By varying the height of the flange and the wind speed, the effects of the above on the flow field and the power coefficient of the turbine were studied. The CFD resulting power coefficients are also compared and good agreement with existing in the literature experimental data was obtained. The results showed that there is a significant improvement in the performance of the wind turbine (by a factor from 2 to 5 on power coefficient at high blade tip speed ratio) and the proposed modification is particularly attractive for small wind turbines. The particular characteristics of the flow field, that are responsible for this improvement are identified and analysed in detail offering a better understanding of the physical processes involved.


Author(s):  
Tao Fan ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Bi Sun

Computational fluid dynamics is widely used in the aerodynamic performance analysis of the low pressure exhaust system (LPES) which consists of the exhaust hood and condenser neck. However, most of the former studies analyzed the exhaust system separately without considering the effect on flow field from the last stage. In order to get the detailed information of flow field in LPES of steam turbines and reduce energy loss, a numerical model includes condenser neck, exhaust hood and last stage was constructed. This model can describe the effect of unsymmetrical inlet flow on the aerodynamic performance of LPES, so the effect of the inhomogeneous flow from the last stage was taken into account. The Reynolds averaged N-S equations with RNG k-ε turbulence model were adopted to analyze the flow field in the exhaust system considering the interaction between the exhaust system and the last stage, the mixing plane approach was used. The combined model can provide more reasonable numerical results of LPES, it shows that the inhomogeneous flow from the last stage is one of the main reasons leading to flow separation in diffuser. The influence of inner low pressure heater and the diffuse function of the condenser neck structure are the main reasons for the nonuniform velocity distribution of the flow field at the LPES outlet. Furthermore, based on the numerical results, an optimal LPES which has better aerodynamic performance and more reasonable flow is obtained. The optimal structure has low steam resistance and low exhaust pressure, so it can increase the efficiency of turbine.


2018 ◽  
Vol 10 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Gang Chen ◽  
Shiguang Xu ◽  
Chunxue Liu ◽  
Lei Lu ◽  
Liang Guo

Abstract Mine water inrush is one of the important factors threatening safe production in mines. The accurate understanding of the mine groundwater flow field can effectively reduce the hazards of mine water inrush. Numerical simulation is an important method to study the groundwater flow field. This paper numerically simulates the groundwater seepage field in the GaoSong ore field. In order to ensure the accuracy of the numerical model, the research team completed 3,724 field fissure measurements in the study area. The fracture measurement results were analyzed using the GEOFRAC method and the whole-area fracture network data were generated. On this basis, the rock mass permeability coefficient tensor of the aquifer in the study area was calculated. The tensor calculation results are used in the numerical model of groundwater flow. After calculation, the obtained numerical model can better represent the groundwater seepage field in the study area. In addition, we designed three different numerical models for calculation, mainly to explore the influence of the tensor assignment of permeability coefficient on the calculation results of water yield of the mine. The results showed that irrational fathom tensor assignment would cause a significant deviation in calculation results.


Author(s):  
A. Glahn ◽  
M. Kurreck ◽  
M. Willmann ◽  
S. Wittig

The present paper deals with oil droplet now phenomena in aero engine bearing chambers. An experimental investigation of droplet sizes and velocities utilizing a Phase Doppler Particle Analyzer (PDPA) has been performed for the first time in bearing chamber atmospheres under real engine conditions. Influences of high rotational speeds are discussed for individual droplet size classes. Although this is an important contribution to a better understanding of the droplet flow impact on secondary air/oil system performance, an analysis of the droplet flow behaviour requires an incorporation of numerical methods because detailed measurements as performed here suffer from both strong spatial limitations with respect to the optical accessibility in real engine applications and constraints due to the extremely time consuming nature of an experimental flow field analysis. Therefore, further analysis is based on numerical methods. Droplets characterized within the experiments are exposed to the flow field of the gaseous phase predicted by use of our well-known CFD code EPOS. The droplet trajectories and velocities are calculated within a Lagrangian frame of reference by forward numerical integration of the particle momentum equation. This paper has been initiated rather to show a successful method of bearing chamber droplet flow analysis by a combination of droplet sizing techniques and numerical approaches than to present field values as a function of all operating parameters. However, a first insight into the complex droplet flow phenomena is given and specific problems in bearing chamber heat transfer are related to the droplet flow.


Author(s):  
Kurt Weber ◽  
Girish Modgil ◽  
Steve Gegg ◽  
Shyam Neerarambam ◽  
Moujin Zhang

The flow field in High-Work Single-Stage (HWSS) turbines differs from traditional turbine flow fields. Operating at increased pressure ratios, wakes and trailing edge shocks at the exit of the vane are more likely to cause a vibratory response in the rotating blade. This flow field can produce increased excitation at harmonics that correspond to the vane passing frequency and harmonics higher than the vane passing frequency. In this paper, blade vibratory stresses in a HWSS gas turbine stage are predicted using unsteady pressures from two Rolls-Royce in-house flow codes that employ different phase lagged unsteady approaches. Hydra uses a harmonic storage approach, and the Vane/Blade Interaction (VBI) code uses a direct storage approach. Harmonic storage reduces memory requirements considerably. The predicted stress for four modes at two engine speeds are presented and are compared with rig test strain gauge data to assess and validate the predictive capability of the codes for forced response. Strain gauge data showed the need to consider harmonics higher than the fundamental vane passing frequency for the max power shaft speed and operating at the conditions. Because of this, it was a good case for validation and for comparing the two codes. Overall, it was found that, stress predictions using the Hydra flow code compare better with data. To the best of the authors’ knowledge, this paper is a first in comparing two different phase lagged unsteady approaches, in the context of forced response, to engine rig data for a High-Work Single Stage turbine.


2018 ◽  
Vol 2 (3) ◽  
pp. 32 ◽  
Author(s):  
Benjamin Oyegbile ◽  
Guven Akdogan ◽  
Mohsen Karimi

In this study, an experimentally validated computational model was developed to investigate the hydrodynamics in a rotor-stator vortex agglomeration reactor RVR having a rotating disc at the centre with two shrouded outer plates. A numerical simulation was performed using a simplified form of the reactor geometry to compute the 3-D flow field in batch mode operations. Thereafter, the model was validated using data from a 2-D Particle Image Velocimetry (PIV) flow analysis performed during the design of the reactor. Using different operating speeds, namely 70, 90, 110, and 130 rpm, the flow fields were computed numerically, followed by a comprehensive data analysis. The simulation results showed separated boundary layers on the rotating disc and the stator. The flow field within the reactor was characterized by a rotational plane circular forced vortex flow, in which the streamlines are concentric circles with a rotational vortex. Overall, the results of the numerical simulation demonstrated a fairly good agreement between the Computational Fluid Dynamics (CFD) model and the experimental data, as well as the available theoretical predictions. The swirl ratio β was found to be approximately 0.4044, 0.4038, 0.4044, and 0.4043 for the operating speeds of N = 70, 90, 110, and 130 rpm, respectively. In terms of the spatial distribution, the turbulence intensity and kinetic energy were concentrated on the outer region of the reactor, while the circumferential velocity showed a decreasing intensity towards the shroud. However, a comparison of the CFD and experimental predictions of the tangential velocity and the vorticity amplitude profiles showed that these parameters were under-predicted by the experimental analysis, which could be attributed to some of the experimental limitations rather than the robustness of the CFD model or numerical code.


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Michalina Markousi ◽  
Dimitrios K. Fytanidis ◽  
Johannes V. Soulis

Reducing the wind loading of photovoltaic structures is crucial for their structural stability. In this study, two solar panel arrayed sets were numerically tested for load reduction purposes. All panel surface areas of the arrayed set are exposed to the wind similarly. The first set was comprised of conventional panels. The second one was fitted with square holes located right at the gravity center of each panel. Wind flow analysis on standalone arrayed set of panels at fixed inclination was carried out to calculate the wind loads at various flow velocities and directions. The panels which included holes reduced the velocity in the downwind flow region and extended the low velocity flow region when compared to the nonhole panels. The loading reduction, in the arrayed set of panels with holes ranged from 0.8% to 12.53%. The maximum load reduction occurred at 6.0 m/s upwind velocity and 120.0° approach angle. At 30.00 approach angle, wind load increased but marginally. Current research work findings suggest that the panel holes greatly affect the flow pattern and subsequently the wind load reduction. The computational analysis indicates that it is possible to considerably reduce the wind loading using panels with holes.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


2018 ◽  
Vol 846 ◽  
pp. 210-239
Author(s):  
Vinicius M. Sauer ◽  
Fernando F. Fachini ◽  
Derek Dunn-Rankin

Tubular flames represent a canonical combustion configuration that can simplify reacting flow analysis and also be employed in practical power generation systems. In this paper, a theoretical model for non-premixed tubular flames, with delivery of liquid fuel through porous walls into a swirling flow field, is presented. Perturbation theory is used to analyse this new tubular flame configuration, which is the non-premixed equivalent to a premixed swirl-type tubular burner – following the original classification of premixed tubular systems into swirl and counterflow types. The incompressible viscous flow field is modelled with an axisymmetric similarity solution. Axial decay of the initial swirl velocity and surface mass transfer from the porous walls are considered through the superposition of laminar swirling flow on a Berman flow with uniform mass injection in a straight pipe. The flame structure is obtained assuming infinitely fast conversion of reactants into products and unity Lewis numbers, allowing the application of the Shvab–Zel’dovich coupling function approach.


Author(s):  
Shaowen Chen ◽  
Qinghe Meng ◽  
Weihang Li ◽  
Zhihua Zhou ◽  
Songtao Wang

The effects of axially non-uniform clearances on the tip leakage flow and aerodynamic performance in a linear turbine cascade with a cavity squealer tip were investigated in this study with the objective of improving the flow loss and tip flow field structure. A calibrated five-hole probe was used for the measurement of three-dimensional flows downstream of the cascade. The method of oil-flow visualization was used to show the endwall flow field structure. The distribution of endwall static pressure was measured particularly by using the special moveable endwall. The axially non-uniform clearance, as a novel strategy that has a non-negligible influence on tip clearance flow and clearance leakage loss, may become a potential technology for improving aerodynamic performance in turbine cascades. By using the expanding clearance, the flow loss at the outlet is reduced effectively and an apparent improvement of aerodynamic performance in the turbine cascade is gained. Under the tip clearances of 0.75% H and 2% H, the maximum reduction of overall total pressure loss coefficient at the outlet is separately about 2.3% and 3.5% compared with the uniform clearance. The shrinkage of the buffer zone is considered to be able to weaken the interaction of the tip leakage vortex and passage vortex and thus reduce the loss of passage vortex. For the shrinking clearance, a noticeable decline in the aerodynamic performance of turbine cascade with cavity squealer tip is exhibited at both on and off design conditions in contrast to the uniform clearance. In addition, the effects of axially non-uniform clearances on the aerodynamic performance at off-design conditions have been investigated.


Sign in / Sign up

Export Citation Format

Share Document