Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening

2020 ◽  
Vol 25 (6) ◽  
pp. 655-664
Author(s):  
Wienand A. Omta ◽  
Roy G. van Heesbeen ◽  
Ian Shen ◽  
Jacob de Nobel ◽  
Desmond Robers ◽  
...  

There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.

Author(s):  
Marko Pregeljc ◽  
Erik Štrumbelj ◽  
Miran Mihelcic ◽  
Igor Kononenko

The authors employed traditional and novel machine learning to improve insight into the connections between the quality of an organization of enterprises as a type of formal social units and the results of enterprises’ performance in this chapter. The analyzed data set contains 72 Slovenian enterprises’ economic results across four years and indicators of their organizational quality. The authors hypothesize that a causal relationship exists between the latter and the former. In the first part of a two-part process, they use several classification algorithms to study these relationships and to evaluate how accurately they predict the target economic results. However, the most successful models were often very complex and difficult to interpret, especially for non-technical users. Therefore, in the second part, the authors take advantage of a novel general explanation method that can be used to explain the influence of individual features on the model’s prediction. Results show that traditional machine-learning approaches are successful at modeling the dependency relationship. Furthermore, the explanation of the influence of the input features on the predicted economic results provides insights that have a meaningful economic interpretation.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


2021 ◽  
Author(s):  
Junjie Shi ◽  
Jiang Bian ◽  
Jakob Richter ◽  
Kuan-Hsun Chen ◽  
Jörg Rahnenführer ◽  
...  

AbstractThe predictive performance of a machine learning model highly depends on the corresponding hyper-parameter setting. Hence, hyper-parameter tuning is often indispensable. Normally such tuning requires the dedicated machine learning model to be trained and evaluated on centralized data to obtain a performance estimate. However, in a distributed machine learning scenario, it is not always possible to collect all the data from all nodes due to privacy concerns or storage limitations. Moreover, if data has to be transferred through low bandwidth connections it reduces the time available for tuning. Model-Based Optimization (MBO) is one state-of-the-art method for tuning hyper-parameters but the application on distributed machine learning models or federated learning lacks research. This work proposes a framework $$\textit{MODES}$$ MODES that allows to deploy MBO on resource-constrained distributed embedded systems. Each node trains an individual model based on its local data. The goal is to optimize the combined prediction accuracy. The presented framework offers two optimization modes: (1) $$\textit{MODES}$$ MODES -B considers the whole ensemble as a single black box and optimizes the hyper-parameters of each individual model jointly, and (2) $$\textit{MODES}$$ MODES -I considers all models as clones of the same black box which allows it to efficiently parallelize the optimization in a distributed setting. We evaluate $$\textit{MODES}$$ MODES by conducting experiments on the optimization for the hyper-parameters of a random forest and a multi-layer perceptron. The experimental results demonstrate that, with an improvement in terms of mean accuracy ($$\textit{MODES}$$ MODES -B), run-time efficiency ($$\textit{MODES}$$ MODES -I), and statistical stability for both modes, $$\textit{MODES}$$ MODES outperforms the baseline, i.e., carry out tuning with MBO on each node individually with its local sub-data set.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


Author(s):  
Monalisa Ghosh ◽  
Chetna Singhal

Video streaming services top the internet traffic surging forward a competitive environment to impart best quality of experience (QoE) to the users. The standard codecs utilized in video transmission systems eliminate the spatiotemporal redundancies in order to decrease the bandwidth requirement. This may adversely affect the perceptual quality of videos. To rate a video quality both subjective and objective parameters can be used. So, it is essential to construct frameworks which will measure integrity of video just like humans. This chapter focuses on application of machine learning to evaluate the QoE without requiring human efforts with higher accuracy of 86% and 91% employing the linear and support vector regression respectively. Machine learning model is developed to forecast the subjective quality of H.264 videos obtained after streaming through wireless networks from the subjective scores.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4368 ◽  
Author(s):  
Chun-Wei Chen ◽  
Chun-Chang Li ◽  
Chen-Yu Lin

Energy baseline is an important method for measuring the energy-saving benefits of chiller system, and the benefits can be calculated by comparing prediction models and actual results. Currently, machine learning is often adopted as a prediction model for energy baselines. Common models include regression, ensemble learning, and deep learning models. In this study, we first reviewed several machine learning algorithms, which were used to establish prediction models. Then, the concept of clustering to preprocess chiller data was adopted. Data mining, K-means clustering, and gap statistic were used to successfully identify the critical variables to cluster chiller modes. Applying these key variables effectively enhanced the quality of the chiller data, and combining the clustering results and the machine learning model effectively improved the prediction accuracy of the model and the reliability of the energy baselines.


2020 ◽  
Vol 10 (22) ◽  
pp. 8067
Author(s):  
Tomohiro Mashita ◽  
Tetsuya Kanayama ◽  
Photchara Ratsamee

Air conditioners enable a comfortable environment for people in a variety of scenarios. However, in the case of a room with multiple people, the specific comfort for a particular person is highly dependent on their clothes, metabolism, preference, and so on, and the ideal conditions for each person in a room can conflict with each other. An ideal way to resolve these kinds of conflicts is an intelligent air conditioning system that can independently control air temperature and flow at different areas in a room and then produce thermal comfort for multiple users, which we define as the personal preference of air flow and temperature. In this paper, we propose Personal Atmosphere, a machine learning based method to obtain parameters of air conditioners which generate non-uniform distributions of air temperature and flow in a room. In this method, two dimensional air-temperature and -flow distributions in a room are used as input to a machine learning model. These inputs can be considered a summary of each user’s preference. Then the model outputs a parameter set for air conditioners in a given room. We utilized ResNet-50 as the model and generated a data set of air temperature and flow distributions using computational fluid dynamics (CFD) software. We then conducted evaluations with two rooms that have two and four air conditioners under the ceiling. We then confirmed that the estimated parameters of the air conditioners can generate air temperature and flow distributions close to those required in simulation. We also evaluated the performance of a ResNet-50 with fine tuning. This result shows that its learning time is significantly decreased, but performance is also decreased.


2020 ◽  
pp. 1-12
Author(s):  
Qinglong Ding ◽  
Zhenfeng Ding

Sports competition characteristics play an important role in judging the fairness of the game and improving the skills of the athletes. At present, the feature recognition of sports competition is affected by the environmental background, which causes problems in feature recognition. In order to improve the effect of feature recognition of sports competition, this study improves the TLD algorithm, and uses machine learning to build a feature recognition model of sports competition based on the improved TLD algorithm. Moreover, this study applies the TLD algorithm to the long-term pedestrian tracking of PTZ cameras. In view of the shortcomings of the TLD algorithm, this study improves the TLD algorithm. In addition, the improved TLD algorithm is experimentally analyzed on a standard data set, and the improved TLD algorithm is experimentally verified. Finally, the experimental results are visually represented by mathematical statistics methods. The research shows that the method proposed by this paper has certain effects.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 332
Author(s):  
Ernest Kwame Ampomah ◽  
Zhiguang Qin ◽  
Gabriel Nyame

Forecasting the direction and trend of stock price is an important task which helps investors to make prudent financial decisions in the stock market. Investment in the stock market has a big risk associated with it. Minimizing prediction error reduces the investment risk. Machine learning (ML) models typically perform better than statistical and econometric models. Also, ensemble ML models have been shown in the literature to be able to produce superior performance than single ML models. In this work, we compare the effectiveness of tree-based ensemble ML models (Random Forest (RF), XGBoost Classifier (XG), Bagging Classifier (BC), AdaBoost Classifier (Ada), Extra Trees Classifier (ET), and Voting Classifier (VC)) in forecasting the direction of stock price movement. Eight different stock data from three stock exchanges (NYSE, NASDAQ, and NSE) are randomly collected and used for the study. Each data set is split into training and test set. Ten-fold cross validation accuracy is used to evaluate the ML models on the training set. In addition, the ML models are evaluated on the test set using accuracy, precision, recall, F1-score, specificity, and area under receiver operating characteristics curve (AUC-ROC). Kendall W test of concordance is used to rank the performance of the tree-based ML algorithms. For the training set, the AdaBoost model performed better than the rest of the models. For the test set, accuracy, precision, F1-score, and AUC metrics generated results significant to rank the models, and the Extra Trees classifier outperformed the other models in all the rankings.


Sign in / Sign up

Export Citation Format

Share Document