scholarly journals Impact of Hypothermia on Differentiation and Maturation of Neutrophils

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2393-2393
Author(s):  
Yusuke Torikoshi ◽  
Asumi Yokota ◽  
Naoka Kamio ◽  
Atsushi Sato ◽  
Tsukimi Shouji ◽  
...  

Abstract Accumulating evidence has suggested that low body temperature is associated with the risk of infection. Unintentional drops in the body temperature known as "accidental hypothermia" are occasionally accompanied with infections. Patients under therapeutic hypothermia for post-cardiac arrest care are also susceptible to infections. In addition, secondary hypothermia caused by severe sepsis is significantly associated with higher mortality. These observations suggest the negative impact of hypothermia on host defense. Neutrophils are continuously produced in the bone marrow (BM) and supplied to the peripheral blood (PB) or tissues, where they fight against microorganisms. In addition to the neutrophil functions, sufficient supply of neutrophils is a critical determinant of host defense. However, little is known about the impact of hypothermia on granulopoiesis, the process of neutrophil production in the BM. In this study, we investigated the changes in granulopoiesis under hypothermic conditions. We first analyzed the neutrophils in the PB of mice exposed to low environmental temperature (4 °C). Under this condition, rectal temperature of the mice significantly declined from 36.7±0.4 °C to 35.5±0.4 °C. After 72-hour exposure to the low environmental temperature, PB neutrophil counts were significantly decreased. In order to understand the reason for the decrease, we analyzed their BMs by flow cytometry. Previously we developed a unique strategy to divide cells undergoing granulopoiesis into 5 subpopulations based on the expression of c-kit and Ly6G, which reflect successive differentiation/maturation from #1 (c-kithi Ly6G-) to #5 (c-kit- Ly6Ghi) (Satake S and Hirai H et al. J Immunol, 2012). In BM cells of the mice exposed to the low environmental temperature, a significant decrease in mature neutrophils (#5) and a significant increase in cellular intermediates (#3 and #4) were observed, while total BM cell numbers were unchanged. In order to clarify whether these changes were cell-intrinsic or -extrinsic, total BM cells were cultured in vitro at either 35 °C or 37 °C in the presence of G-CSF. Flow cytometric analysis of these cultured BM cells at 72 hours revealed the increase in the intermediates (#2 to #4) and a decrease in the mature subpopulation (#5), suggesting that these alterations were cell-intrinsic phenomena. When neutrophil precursors (#1 or #2) were purified by cell sorter and subjected to in vitro culture at 35 °C for 48 hours, the number of resultant mature neutrophils (#5) were significantly less than those induced at 37 °C. These results clearly indicate that hypothermia delayed neutrophil differentiation/maturation. Interestingly, mice with sepsis induced by cecal ligation and puncture (CLP) accompanied with lower body temperature revealed significantly fewer PB granulocytes and shorter survival when compared to those mice which maintained normal body temperature after CLP. In order to understand the molecular mechanisms underlying the differentiation/maturation delay induced by hypothermia, we performed RNA sequencing of purified neutrophil precursors (#2) after 24-hour culture either at 35 °C or 37 °C. Interestingly, we found alterations in amino acid metabolic pathways and target genes of C/EBP, which is the transcription factor family required for granulopoiesis and cellular metabolism. Collectively, these results indicate hypothermia causes neutropenia through delayed neutrophil differentiation/maturation. We are currently analyzing metabolic changes to understand more precise molecular mechanisms by which hypothermia regulates granulopoiesis. This study will facilitate the understanding of host defense at low body temperature, and shed novel insight into the management of hypothermia in patients. Disclosures Kashiwagi: Takara Bio Inc.: Employment. Hirai:Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding.

2015 ◽  
Vol 112 (5) ◽  
pp. 1607-1612 ◽  
Author(s):  
Willem J. Laursen ◽  
Marco Mastrotto ◽  
Dominik Pesta ◽  
Owen H. Funk ◽  
Jena B. Goodman ◽  
...  

Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as −2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


Author(s):  
Victor Delprat ◽  
Carine Michiels

AbstractCancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3179 ◽  
Author(s):  
Tiziana Filardi ◽  
Rosaria Varì ◽  
Elisabetta Ferretti ◽  
Alessandra Zicari ◽  
Susanna Morano ◽  
...  

Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a significant role in medicine for centuries. The growing interest in plant-derived substances has led to increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial effects observed in various chronic diseases in humans, limited and fragmentary information is currently available about curcumin’s effects on pregnancy and pregnancy-related complications. It is known that immune-metabolic alterations occurring during pregnancy have consequences on both maternal and fetal tissues, leading to short- and long-term complications. The reported anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic, antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging, not only for the management of pregnancy-related disorders, including gestational diabetes mellitus (GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast damage induced by natural and chemical toxic agents. The current review summarizes the latest data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the possible beneficial and/or adverse effects of curcumin on pregnancy outcomes.


Author(s):  
Benjamin W. Scandling ◽  
Jia Gou ◽  
Jessica Thomas ◽  
Jacqueline Xuan ◽  
Chuan Xue ◽  
...  

Many cells in the body experience cyclic mechanical loading, which can impact cellular processes and morphology. In vitro studies often report that cells reorient in response to cyclic stretch of their substrate. To explore cellular mechanisms involved in this reorientation, a computational model was developed by utilizing the previous computational models of the actin-myosin-integrin motor-clutch system developed by others. The computational model predicts that under most conditions, actin bundles align perpendicular to the direction of applied cyclic stretch, but under specific conditions, such as low substrate stiffness, actin bundles align parallel to the direction of stretch. The model also predicts that stretch frequency impacts the rate of reorientation, and that proper myosin function is critical in the reorientation response. These computational predictions are consistent with reports from the literature and new experimental results presented here. The model suggests that the impact of different stretching conditions (stretch type, amplitude, frequency, substrate stiffness, etc.) on the direction of cell alignment can largely be understood by considering their impact on cell-substrate detachment events, specifically whether detachment occurs during stretching or relaxing of the substrate.


Author(s):  
Peter Mancuso ◽  
Jeffrey L Curtis ◽  
Anne Marie Weitzel ◽  
Cameron A Griffin ◽  
Benjamin Bouchard ◽  
...  

Obesity impairs host defense against Klebsiella pneumoniae but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-week-old male C57BL/6j mice a normal (ND) or high fat diet (HFD) (13% versus 60% fat, respectively) for 16 weeks. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-D-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1β, IL-6, IL-17, IFN-ɣ, CXCL2, and TNF-ɑ were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, and CXCL2 and IL-1β (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intra-alveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing, and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.


Sign in / Sign up

Export Citation Format

Share Document