scholarly journals Dissecting the Adaptive Response to Arginine Deprivation in Hodgkin Lymphoma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4497-4497
Author(s):  
Fabrizio Puglisi ◽  
Antonella Padella ◽  
Nunziatina Laura Parrinello ◽  
Grazia Scandura ◽  
Daniela Cambria ◽  
...  

Abstract Background In Hodgkin Lymphoma (HL), neoplastic cells orchestrate an inflammatory microenvironment leading to sterile inflammation, T-cell anergy, and immune deficiency. Our group showed that in HL patients the aminoacid degrading enzyme Arginase-1 is increased, associated with poor outcome, and leads to arginine (Arg) deprivation. However, how the reduction of Arg in the extracellular milieu of the tumor microenvironment can contribute to neoplastic cell fitness is largely unknown. Aims To detect the adaptive response (via evaluation of global transcriptome and metabolome changes) in human HL cell lines exposed to Arg deprivation. Methods To better understand the impact of extra-cellular Arg1 deprivation on the metabolome of human cHL cells, four human cHL cell lines (L428, L540, HDMYZ and KM-H2) were individually cultured with customized complete media or lacking or Arg (R0), supplemented with 10% dialyzed fetal bovine serum, in six independent experiments. After 48 hours of culture, the cells were collected for global metabolomic analysis, by gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) platforms by Metabolon Inc and transcriptome profiling by Illumina platform. Following normalization to DNA concentration, log transformation, and imputation of missing values, if any, with the minimum observed value for each compound, Welch's two-sample t-test was used to identify biochemicals that differed significantly between experimental groups. Results While Arg deprivation did not affect cell viability but delayed cell cycle due to arrest in G2 phase in all tested cell lines, the effect of Arg deficiency on the cellular metabolome depended largely on the cell type examined with L428 and KMH2 cells having significantly changed metabolomes. Pyruvate was significantly higher in the KMH2 cells deprived of Arg compared to controls. Conversely, lactate was significantly lower, with increased levels of long-chain saturated fatty acids and long-chain polyunsaturated fatty acids (PUFAs). Taken together the metabolomics changes suggested that specific-amino acid deficiency can lead to an increase in free fatty acids synthases to preserve cytoplasmatic and mitochondrial membrane dynamics. Consistent with a metabolic rewiring to maintain mitochondrial integrity (the pyruvate is an important intermediary in the conversion of carbohydrates into fatty acids), the adaptive response was associated to increased oxidative stress, as suggested by of reduced glutathione in KMH2 cells, depletion of gamma-glutamylcysteine, increased cystine, the oxidative product of cysteine, and methionine sulfoxide (an oxidation product of methionine). Gene set enrichment analysis (GSEA) showed deep transcriptome rearrangements in KMH2 and HDMYZ cell lines, involving upregulation of genes required for the unfolded protein response (UPR, including XBP1, EIF2S1, EIF4A2, EIF4A3, ATF3, ATF4, DDIT4, EDEM1, GADD45B, SQSTM1, HMOX), NF-kB response to TNF (including RAF1, TNF, LIF, NKBIA, SGK1, BIRC3, ICAM1, BCL6, IL6, RELA, CDKN1A), p53 pathway and networks (including CDKN2B, STOM, TRAF4, RRAD, SESN1, FOXO3, SERPINB5, JAG2) and proteosome degradation (HSPA4, PSMD11, PSMD13, PSMD2, PSMA5, PSMA7, PSMC4), with a minimal effect on metabolism features, except the upregulation of genes involved in lactate generation and degradation. All lines tested showed down-regulation of CCNI2, LCROL, MKI67, NCAPG, PEX10 and UFSP2, suggesting that early response to arginine deprivation includes modulation of UFMylation pathway, the most recently discovered post-translational protein modification system, whose biological function is largely unknown. Conclusions The removal of Arg from L428 and KMH2 resulted in changes in the specific-amino acid-related metabolites. The adaptive response to Arg-depleted environment increases oxidative stress and promotes a shift in glucose use in the attempt to preserve mitochondrial function. The cell-cycle arrest in G2, the increase of pyruvate availability and the upregulation of proteasome function via upregulation of the UFMylation pathway suggest the dependency of HL cell lines on mitochondrial function integrity. Quantity and function of mitochondria network can play a major role in selecting the fittest clones, a metabolic pathway that should be explored as novel non -synthetic lethal targets. Disclosures Martinelli: Stemline Therapeutics: Consultancy; Roche: Consultancy; Astellas: Consultancy, Speakers Bureau; Daichii Sankyo: Consultancy; Pfizer: Consultancy, Speakers Bureau; Incyte: Consultancy; Abbvie: Consultancy; Celgene /BMS: Consultancy, Speakers Bureau; Jazz Pharmaceuticals: Consultancy. Di Raimondo: Pfizer: Honoraria; Jazz Pharmaceutical: Honoraria; Amgen: Honoraria; AbbVie: Honoraria; Bristol Myers Squibb: Honoraria; Janssen Pharmaceuticals: Honoraria.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-27
Author(s):  
Fabrizio Puglisi ◽  
Enrico La Spina ◽  
Alessandro Barbato ◽  
Grazia Scandura ◽  
Cesarina Giallongo ◽  
...  

Background Tryptophan (trp) is an essential aminoacid, required for de novo NAD+ synthesis. Our previous work showed that the microenvironment in classical Hodgkin Lymphoma is characterized by dysfunctional neutrophils and myeloid derived suppressor cells that produce a trp-degrading enzyme indoelamine deoxygenase (IDO-1), lowering the amount of trp. Aims To detect metabolomics changes in human cHL cell lines exposed in vitro to tryptophan deprivation, an amino acid involved in immune dysregulation and generation of anergic and tolerogenic T- cells. Methods In order to better understand the impact of extra-cellular IDO1 increase on the metabolome of human cHL cells, three human cHL cell lines (L428, L540 and KM-H2) were individually cultured with customized complete media or media lacking tryptophan (W0), +10% dyalised fetal bovum serum, in six independent experiments. After 48 hours of culture the cells were collected for global metabolomic analysis, by gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS) platforms by Metabolon Inc. Following normalization to DNA concentration, log transformation and imputation of missing values, if any, with the minimum observed value for each compound, Welch's two-sample t-test was used to identify biochemicals that differed significantly between experimental groups (Table 1). Results The lack of tryptophan in media had a profound effect on the cell metabolome in 2 cell lines, KMH2 and L428 cells, while L540 cell line was pretty resilient (Table 1). In all cell lines, the removal of tryptophan from the media resulted in significantly lower levels of tryptophan. Kynurenine, the metabolic product of IDO-1 action on tryptophan, was lower in all cells, but did not reach significance in the L540 cells, whereas it trended lower in L428 and was significantly lower in the KMH2 compared to controls. Indolelactate, another major tryptophan metabolite was also significantly lower in the L428 and KMH2 cells lines compared to controls. Glucose uptake and aerobic glycolysis are frequently upregulated in tumor cells to support energy needs and provide biosynthetic precursors (e.g. pentose phosphate pathway intermediates for nucleotide synthesis). Known as the Warburg effect, this process of reliance on glucose for energy results in high levels of lactate production. We found that trp deficiency lead to lower levels of the hexose diphosphates (fructose 1,6-diphosphate/glucose 1,6-diphosphate/myo-inositol diphosphates isobar) and dihydroxyacetone phosphate, suggesting the revert of Warburg effect due to reduced bio-energetic requirements for proliferation. In line with this observation, culture in trp deficient media resulted in increased levels of long chain saturated fatty acids and long chain polyunsaturated fatty acids (PUFAs), suggesting that specific-amino acid deficiency leads to an increase in uptake of free fatty acids from the media, to preserve membrane dynamics. Since prolonged trp deprivation (up to 10 days) delayed cell cycle length without affecting proliferation or changes in intracellular amount of NAD+, we investigated changes in mitochondrial membranes network to explain these findings. Trp deprivation induced the rearrangement of the mitochondrial network at 48 hours, with more fission than fusion, as suggested by increased expression of Fis1 and Drp1 and reduced expression of Tfam and Opa1, without affecting significantly mitochondrial mass and depolarization. This adaptive response was associated to increased oxidative stress, as suggested by of reduced glutathione (GSH) and oxidized glutathione (GSSG) in the L540 and KMH2 cells, depletion of gamma-glutamylcysteine, increased cystine, the oxidative product of cysteine, and methionine sulfoxide (an oxidation product of methionine). Conclusions The removal of trp from L428 and KMH2 resulted in changes in the specific-amino acid related metabolites. The adaptive response to trp-depleted microenvironment can revert the Warburg effect, promoting a shift in the glucose use in the futile attempt to preserve mitochondrial function, and increase oxidative stress. Quantity and function of mitochondria network can play a major role in selecting the fittest clones, a metabolic pathway that should be explored as novel non -synthetic lethal targets. Disclosures Puglisi: Amgen:Honoraria.Di Raimondo:Takeda:Consultancy, Honoraria;GILEAD, Incyte:Research Funding;Amgen, Takeda, Novartis:Honoraria;Celgene:Consultancy, Honoraria;Janssen:Consultancy, Honoraria;GSK:Consultancy, Honoraria;Amgen:Consultancy, Honoraria.Romano:Takeda:Honoraria;Novartis:Honoraria.


2001 ◽  
Vol 47 (7) ◽  
pp. 1166-1182 ◽  
Author(s):  
Donald H Chace ◽  
James C DiPerna ◽  
Brenda L Mitchell ◽  
Bethany Sgroi ◽  
Lindsay F Hofman ◽  
...  

Abstract Background: Deaths from inherited metabolic disorders may remain undiagnosed after postmortem examination and may be classified as sudden infant death syndrome. Tandem mass spectrometry (MS/MS) may reveal disorders of fatty acid oxidation in deaths of previously unknown cause. Methods: We obtained filter-paper blood from 7058 infants from United States and Canadian Medical Examiners. Acylcarnitine and amino acid profiles were obtained by MS/MS. Specialized interpretation was used to evaluate profiles for disorders of fatty acid, organic acid, and amino acid metabolism. The analyses of postmortem blood specimens were compared with the analyses of bile specimens, newborn blood specimens, and specimens obtained from older infants at risk for metabolic disorders. Results: Results on 66 specimens suggested diagnoses of metabolic disorders. The most frequently detected disorders were medium-chain and very-long-chain acyl-CoA dehydrogenase deficiencies (23 and 9 cases, respectively), glutaric acidemia type I and II deficiencies (3 and 8 cases, respectively), carnitine palmitoyl transferase type II/translocase deficiencies (6 cases), severe carnitine deficiency (4 cases), isovaleric acidemia/2-methylbutyryl-CoA dehydrogenase deficiencies (4 cases), and long-chain hydroxyacyl-CoA dehydrogenase/trifunctional protein deficiencies (4 cases). Conclusions: Postmortem metabolic screening can explain deaths in infants and children and provide estimates of the number of infant deaths attributable to inborn errors of metabolism. MS/MS is cost-effective for analysis of postmortem specimens and should be considered for routine use by Medical Examiners and pathologists in unexpected/unknown infant and child death.


2003 ◽  
Vol 79 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Fredoen Valianpour ◽  
Jacqueline J.M Selhorst ◽  
Lia E.M van Lint ◽  
Albert H van Gennip ◽  
Ronald J.A Wanders ◽  
...  

1984 ◽  
Vol 62 (3) ◽  
pp. 574-579 ◽  
Author(s):  
David A. Holden

Procedures are described for the synthesis of several azides, diimides, and azodiformates from long-chain alcohols and fatty acids. These reactive compounds have potential applications as thermal and photochemical curing agents, and as surface-modifying agents for the preparation of filled plastics and chromatographic packings. The surface activity of the compounds was characterized by investigations of their spreading behaviour in monolayers on water. Unlike the single-chain azides and azo compounds, which give well-defined monolayers at all temperatures, monolayers of diacyl diimides and dialkyl azodiformates with two long-chain substituents are unstable with respect to collapse to the bulk solid. The photoreaction of monolayers of octadecanoyl azide to give a mixture of products derived from an intermediate isocyanate was demonstrated by ir and mass spectrometry.


2016 ◽  
Vol 116 (8) ◽  
pp. 1416-1424 ◽  
Author(s):  
Chelsea Anderson ◽  
Ginger L. Milne ◽  
Dale P. Sandler ◽  
Hazel B. Nichols

AbstractHigher levels of oxidative stress, as measured by F2-isoprostanes, have been associated with chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may help reduce oxidative stress; however, previous studies regarding associations between lifestyle factors and F2-isoprostane concentrations have been inconsistent. The aim of this cross-sectional study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant nutrients, dietary fat subgroups and alcohol are associated with concentrations of F2-isoprostane and the major F2-isoprostane metabolite. Urinary F2-isoprostane and its metabolite were measured in urine samples collected at enrolment from 912 premenopausal women (aged 35–54 years) participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were self-reported via questionnaires. With adjustment for potential confounders, the geometric means of F2-isoprostane and its metabolite were calculated according to quartiles of dietary intakes, alcohol consumption and physical activity, and linear regression models were used to evaluate trends. Significant inverse associations were found between F2-isoprostane and/or its metabolite and physical activity, vegetables, fruits, vitamin C, α-carotene, vitamin E, β-carotene, vitamin A, Se, lutein+zeaxanthin and long-chain n-3 fatty acids. Although trans fats were positively associated with both F2-isoprostane and its metabolite, other dietary fat subgroups including SFA, n-6 fatty acids, n-3 fatty acids, MUFA, PUFA, short-chain n-3 fatty acids, long-chain n-3 fatty acids and total fat were not associated with either F2-isoprostane or its metabolite. Our findings suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated with greater oxidative stress among premenopausal women.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jennifer Mytych ◽  
Anna Lewinska ◽  
Jacek Zebrowski ◽  
Maciej Wnuk

Nanogold-based materials are promising candidate tools for nanobased medicine. Nevertheless, no conclusive information on their cytotoxicity is available. In the present study, we investigated the effects of gold nanoparticles (AuNPs) on human astrocytesin vitro. Nanogold treatment in a wide range of concentrations did not result in cytotoxicity. In contrast, nanogold provoked changes in the astrocyte cell cycle and induced senescence-associatedβ-galactosidase activity. AuNPs promoted oxidative stress and caused activation of NF-κB pathway. After nanogold treatment, an inverse correlation between the formation of 53BP1 foci and micronuclei generation was observed. The robust 53BP1 recruitment resulted in reduced micronuclei production. Thus, nanogold treatment stimulated an adaptive response in a human astrocyte cell.


2008 ◽  
Vol 169 (6) ◽  
pp. 700-706 ◽  
Author(s):  
J. H. Miller ◽  
S. Jin ◽  
W. F. Morgan ◽  
A. Yang ◽  
Y. Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document