GAS-6 Rescues Endothelial Cells from Apoptosis through FOXO1 Inactivation.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3686-3686
Author(s):  
Jorge Ganopolsky ◽  
Brian Varnum ◽  
Mark Blostein

Abstract Growth Arrest Specific gene product 6 (GAS-6), a γ-carboxylated protein expressed in quiescent fibroblasts and endothelial cells, exerts an anti-apoptotic function by binding to the receptor tyrosine kinase Axl. Recently, our laboratory has demonstrated that gas6-Axl interactions activate PI3-kinase with subsequent Akt phosphorylation during gas6-mediated protection from apoptosis. The current study explores further the mechanism by which this survival mechanism is achieved. FOXO1 is a member of the Forkhead family of transcription factors that plays a role in the expression of pro-apoptototic genes. Phosphorylation of FOXO1 at Thr24, Ser256 and Ser319 results in phospho-FOXO1 translocation from the nucleus to the cytoplasm, with consequent suppression of FOXO1 transcriptional activity and inhibition of apoptosis. In the present study we show, for the first time, that the treatment of serum-starved endothelial cells with 100 ng/ml of GAS-6 induces FOXO1 phosphorylation in a time dependent manner. Phosphorylated FOXO1 is translocated from the nucleus to the cytoplasm as evidenced by Western blot analysis of both nuclear and cytoplasmic extracts. Using fluorescence microscopy, FOXO1 is found predominantly in the nucleus during apoptosis induced by serum starvation. Upon gas6 stimulation, phosphorylated FOXO1 is translocated to the cytoplasm (see Figure 1). It is suggested that anti-apoptotic genes are then released from suppression and are thereby able to mediate cell survival. Both FOXO1 phosphorylation and translocation are suppressed by Wortmannin, a PI3-kinase inhibitor demonstrating that FOXO1 phosphorylation is PI3-kinase dependent. These results provide mechanistic insight of how gas6 rescues endothelial cells from serum-starvation-induced apoptosis. Foxo1 distribution Foxo1 distribution

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3702-3702
Author(s):  
Mark D. Blostein ◽  
Isabelle Rajotte ◽  
Ines Hasanbasic

Abstract Gas6 is a novel member of the vitamin K-dependent family of γ-carboxylated proteins and is a ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions have been shown to mediate cell survival in vascular endothelium. Although the receptor-binding portion of gas6 lies in the C-terminus, the significance of the N-terminal γ-carboxylated residues (Gla domain) is not clear. To address this question, we recombinantly produced both carboxylated and decarboxylated gas6 and confirmed that the latter is not γ-carboxylated by both Western blotting and fluorescence spectroscopy. Using DAPI staining and flow cytometry, we show that carboxylated gas6 mediates protection of endothelial cells from serum starvation-induced apoptosis whereas decarboxylated gas6 does not. Furthermore, carboxylated gas6, but not decarboxylated gas6, activates Axl and phosphorylates Akt during gas6-Axl-mediated protection of endothelial cells. Interestingly, although decarboxylated gas6 cannot activate Axl and rescue endothelium from serum starvation-induced apoptosis, it can inhibit the survival effect of carboxylated gas6. To further explore the properties of Gla domain of gas6, the binding each form of gas6 to endothelial cells was determined. Both carboxylated and decarboxylated gas6 bind to endothelial cells with an equal affinity of 50 nM. The binding of both forms of gas6 to endothelium is inhibited by an antibody to the extracellular domain of Axl thereby demonstrating that the Gla domain is not required for the direct binding of the C-terminus of gas6 to Axl. These findings support the conclusion that inhibition of gas6-mediated survival by decarboxylated gas6 is not mediated through inhibition of binding of gas6 to its receptor Axl. Rather, the Gla domain of gas6 has a key role by impacting Axl activation via heretofore unknown mechanism(s). Taken together, the results of this study suggest a novel role for γ-carboxylation in gas6 function.


2009 ◽  
Vol 296 (3) ◽  
pp. H777-H786 ◽  
Author(s):  
Anuradha Dhanasekaran ◽  
Sreedhar Bodiga ◽  
Stephanie Gruenloh ◽  
Ying Gao ◽  
Laurel Dunn ◽  
...  

20-Hydroxyeicosatetraenoic acid (20-HETE) is an endogenous cytochrome P-450 product present in vascular smooth muscle and uniquely located in the vascular endothelium of pulmonary arteries (PAs). 20-HETE enhances reactive oxygen species (ROS) production of bovine PA endothelial cells (BPAECs) in an NADPH oxidase-dependent manner and is postulated to promote angiogenesis via activation of this pathway in systemic vascular beds. We tested the capacity of 20-HETE or a stable analog of this compound, 20-hydroxy-eicosa-5( Z),14( Z)-dienoic acid, to enhance survival and protect against apoptosis in BPAECs stressed with serum starvation. 20-HETE produced a concentration-dependent increase in numbers of starved BPAECs and increased 5-bromo-2′-deoxyuridine incorporation. Caspase-3 activity, nuclear fragmentation studies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays supported protection from apoptosis and enhanced survival of starved BPAECs treated with a single application of 20-HETE. Protection from apoptosis depended on intact NADPH oxidase, phosphatidylinositol 3 (PI3)-kinase, and ROS production. 20-HETE-stimulated ROS generation by BPAECs was blocked by inhibition of PI3-kinase or Akt activity. These data suggest 20-HETE-associated protection from apoptosis in BPAECs required activation of PI3-kinase and Akt and generation of ROS. 20-HETE also protected against apoptosis in BPAECs stressed by lipopolysaccharide, and in mouse PAs exposed to hypoxia reoxygenation ex vivo. In summary, 20-HETE may afford a survival advantage to BPAECs through activation of prosurvival PI3-kinase and Akt pathways, NADPH oxidase activation, and NADPH oxidase-derived superoxide.


2004 ◽  
Vol 287 (2) ◽  
pp. G334-G343 ◽  
Author(s):  
Kimberly A. Cullen ◽  
John McCool ◽  
M. Sawkat Anwer ◽  
Cynthia R. L. Webster

cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas ligand-, and TNF-α-induced apoptosis in rat hepatocytes was largely unaffected by the selective PKA inhibitor, Rp-8-(4-chlorophenylthio)-cAMP (Rp-cAMP). In contrast, a novel cAMP analog, 8-(4-chlorophenylthio)-2′- O-methyl (CPT-2-Me)-cAMP, which activated cAMP-GEFs in hepatocytes without activating PKA, protected hepatocytes against apoptosis induced by bile acids, Fas ligand, and TNF-α. The role of cAMP-GEF and PKA on activation of Akt, a kinase implicated in cAMP survival signaling, was investigated. Inhibition of PKA with RP-cAMP had no effect on cAMP-mediated Akt phosphorylation, whereas CPT-2-Me-cAMP, which did not activate PKA, induced phosphatidylinositol 3-kinase (PI3-kinase)-dependent activation of Akt. Pretreatment of hepatocytes with the PI3-kinase inhibitor, Ly-294002, prevented CPT-2-Me-cAMP's protective effect against bile acid and Fas ligand, but not TNF-α-mediated apoptosis. Glucagon, CPT-cAMP, and CPT-2-Me-cAMP all activated Rap 1, a downstream effector of cAMP-GEF. These results suggest that a PKA-independent cAMP/cAMP-GEF/Rap pathway exists in hepatocytes and that activation of cAMP-GEFs promotes Akt phosphorylation and hepatocyte survival. Thus a cAMP/cAMP-GEF/Rap/PI3-kinase/Akt signaling pathway may confer protection against bile acid- and Fas-induced apoptosis in hepatocytes.


2002 ◽  
Vol 283 (6) ◽  
pp. H2322-H2330 ◽  
Author(s):  
Thomas Krieg ◽  
Qining Qin ◽  
Elizabeth C. McIntosh ◽  
Michael V. Cohen ◽  
James M. Downey

Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 ± 0.33 fold ( P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 ± 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo[3,4- d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, Gi protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.


Drug Research ◽  
2019 ◽  
Vol 69 (12) ◽  
pp. 665-670 ◽  
Author(s):  
Mohammad Jalili-Nik ◽  
Hamed Sabri ◽  
Ehsan Zamiri ◽  
Mohammad Soukhtanloo ◽  
Mostafa Karimi Roshan ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the fatal type of astrocytic tumors with a survival rate of 12 months. The present study, for the first time, evaluated the cytotoxic impacts of Ferula latisecta (F. latisecta) hydroalcoholic extract on U87 GBM cell line. The MTT assay measured the cellular toxicity following 24- and 48 h treatment with various doses of F. latisecta (0–800 μg/mL). Apoptosis was evaluated by an Annexin V/propidium iodide (PI) staining 24 h after treatment by F. latisecta. Moreover, to determine the cellular metastasis of U87 cells, we used a gelatin zymography assay (matrix metalloproteinase [MMP]-2/-9 enzymatic activity). The outcomes showed that F. latisecta mitigated the viability of U87 cells in a concentration- and time-dependent manner with IC50 values of 145.3 and 192.3 μg/mL obtained for 24- and 48 h treatments, respectively. F. latisecta induced apoptosis in a concentration-dependent manner after 24 h. Also, MMP-9 activity was significantly decreased following 24 h after treatment concentration-dependently with no change in MMP-2 enzymatic activity. This study showed that F. latisecta induced cytotoxicity and apoptosis, and mitigated metastasis of U87 GBM cells. Hence, F. latisecta could be beneficial as a promising natural herb against GBM after further studies.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2403
Author(s):  
Chenghui Zhou ◽  
Zhefang Wang ◽  
Jiahui Li ◽  
Xiaolin Wu ◽  
Ningbo Fan ◽  
...  

Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3 overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3 attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production. Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.


2001 ◽  
Vol 280 (4) ◽  
pp. R1230-R1239 ◽  
Author(s):  
Kasiani C. Pozios ◽  
Jun Ding ◽  
Brian Degger ◽  
Zee Upton ◽  
Cunming Duan

Insulin-like growth factor (IGF)-I and -II have been cloned from a number of teleost species, but their cellular actions in fish are poorly defined. In this study, we show that both IGF-I and -II stimulated zebrafish embryonic cell proliferation and DNA synthesis in a concentration-dependent manner, whereas insulin had little mitogenic activity. Affinity cross-linking and immunoblotting studies revealed the presence of IGF receptors with the characteristics of the mammalian type I IGF receptor. Competitive binding assay results indicated that the binding affinities of the zebrafish IGF-I receptors to IGF-I, IGF-II, and insulin are 1.9, 2.6, and >190 nM, indicating that IGF-I and -II bind to the IGF-I receptor(s) with approximately equal high affinity. To further investigate the cellular mechanism of IGF actions, we have studied the effects of IGFs on two major signal transduction pathways: mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3 kinase). IGFs activated MAPK in zebrafish embryonic cells in a dose-dependent manner. This activation occurred within 5 min of IGF-I stimulation and disappeared after 1 h. IGF-I also caused a concentration-dependent activation of protein kinase B, a downstream target of PI3 kinase, this activation being sustained for several hours. Inhibition of MAPK activation by the MAPK kinase inhibitor PD-98059 inhibited the IGF-I-stimulated DNA synthesis. Similarly, use of the PI3 kinase inhibitor LY-294002 also inhibited IGF-I-stimulated DNA synthesis. When both the MAPK and PI3 kinase pathways were inhibited using a combination of these compounds, the IGF-I-stimulated DNA synthesis was completely negated. These results indicate that both IGF-I and -II are potent mitogens for zebrafish embryonic cells and that activation of both the MAPK and PI3 kinase-signaling pathways is required for the mitogenic action of IGFs in zebrafish embryonic cells.


2017 ◽  
Vol 313 (3) ◽  
pp. C340-C351 ◽  
Author(s):  
Chongxu Zhang ◽  
Crystal Adamos ◽  
Myung-Jin Oh ◽  
Jugajyoti Baruah ◽  
Manuela A. A. Ayee ◽  
...  

Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs’ proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1. Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.


2001 ◽  
Vol 281 (2) ◽  
pp. C571-C578 ◽  
Author(s):  
Sotaro Sakurada ◽  
Hiroyuki Okamoto ◽  
Noriko Takuwa ◽  
Naotoshi Sugimoto ◽  
Yoh Takuwa

Small GTPase Rho and its downstream effector, Rho kinase, have been implicated in agonist-stimulated Ca2+ sensitization of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. In the present study we demonstrated for the first time that excitatory receptor agonists induce increases in amounts of an active GTP-bound form of RhoA, GTP-RhoA, in rabbit aortic smooth muscle. Using a pull-down assay with a recombinant RhoA-binding protein, Rhotekin, we found that a thromboxane A2 mimetic, U-46619, which induced a sustained contractile response, induced a sustained rise in the amount of GTP-RhoA in a dose-dependent manner with an EC50 value similar to that for the contractile response. U-46619-induced RhoA activation was thromboxane A2 receptor-mediated and reversible. Other agonists including norepinephrine, serotonin, histamine, and endothelin-1 (ET-1) also stimulated RhoA, albeit to lesser extents than U-46619. In contrast, ANG II and phorbol 12,13-dibutyrate failed to increase GTP-RhoA. The tyrosine kinase inhibitor genistein substantially inhibited RhoA activation by these agonists, except for ET-1. Thus excitatory agonists induce Rho activation in an agonist-specific manner, which is thought to contribute to stimulation of MLC20 phosphorylation Ca2+ sensitivity.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1674
Author(s):  
Sergei Boichuk ◽  
Aigul Galembikova ◽  
Ekaterina Mikheeva ◽  
Firuza Bikinieva ◽  
Aida Aukhadieva ◽  
...  

Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.


Sign in / Sign up

Export Citation Format

Share Document