Preclinical Characterization of the JAK-2 Inhibitor, SGI-1252

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2629-2629 ◽  
Author(s):  
Kausar Begam Riaz Ahmed ◽  
Roberto H Nussenzveig ◽  
Andrew T. Chen ◽  
Josef T. Prchal ◽  
Charles J. Parker ◽  
...  

Abstract Discovery of somatic mutation of JAK-2 (G1849T that produces JAK-2V617F) in the hematopoietic cells of patients with Philadelphia chromosome negative myeloproliferative disorders (Ph−MPDs) was a watershed event that not only provided new insights into the pathobiology of polycythemia vera, essential thrombocytosis and primary myelofibrosis but also identified a potential target for therapy. Herein we report the results of preclinical studies designed to characterize the activity of a novel inhibitor of JAK-2. The compound, SGI-1252, developed by SuperGen (Dublin, CA) incorporates with high affinity into the ATP-binding site of JAK-2. SGI-1252 was tested against a panel of 75 kinases and was found to have significant activity against only FLT-3, TYK-2 and the SRC family members, ABL, LCK, YES, in addition to JAK-2 and JAK-1. SGI-1252 has an IC50 for JAK-2 of 5.4 nM with an IC50 for JAK-2V617F of 19.7 nM. The inhibitor also effectively blocks the activity of JAK-1 (IC50 14.8 nM) but has little JAK-3 inhibitory activity (IC50 1,700 nM). SGI-1252 is a potent inhibitor of STAT-5 phosphorylation (EC50 76.2 nM) and was also found to block the JAK-2 dependent expression of the anti-apoptotic protein, BCL-XL (EC50 778 nM). Drug treatment of a murine cell line (FDCP) transfected with either human wild-type JAK-2 or JAK-2G1849Tgenerated IC50 values of 83 nM and 108 nM, respectively, and SGI-1252 treatment of human cell lines, HEL, UKE-1 and SET-2, that express mutant JAK2 in different copy numbers, gave IC50 values of 472 nM, 83 nM and 63 nM, repectively. When tested in ex-vivo expanded native human erythroid progenitor cells from 17 patients with Ph−MPDs (10 PV and 7 MF), SGI-1252 showed an IC50 of ~100 nM, regardless of the JAK-2V617F allele burden. Using a flow cytometric assay, SGI-1252 was shown to induce apoptotic cell death in a concentration dependent manner. Luminex technology allows for concurrent quantitative analysis of multiple proteins from the same tissue source, and this technology was used to investigate simultaneously the effects of SGI-1252 on total and phospho ERK1/2, total and phospho STAT3, phospho STAT5, caspase 3, cleaved PARP and GAPDH (control) in untreated and drug treated cells at IC50 and IC80 concentrations. Significant in vivo efficacy of SGI-1252 was also observed using HEL and MV-4-11 xenograft models when compared to treatment with vehicle or daunorubicin. Using a murine model, we found that SGI-1252 has high oral bioavailability and is well tolerated with a five-day repeat maximum dose of at least 900 mg/kg. Together, these studies demonstrate that SGI-1252 is a potent inhibitor of JAK-2 dependent proliferation in both JAK-2V617F positive cell lines and in ex vivo expanded erythroid progenitors derived from patients with JAK-2V617F positive Ph−MPDs. Moreover, our studies show that the effects of SGI-1252 are mediated by blocking both JAK-2 dependent anti-apoptoic pathways and JAK-2 dependent proliferative pathways. Using the orally available form of the compound, pharmacokinetic, pharmacodynamic and toxicity studies in mice suggest that serum concentration of the drug well above the predicted therapeutic range can be achieved without significant hematological toxicity. Based on these preclinical experiments, SGI-1252 appears to be an excellent candidate for phase I/II studies in patients with Ph−MPDs.

2007 ◽  
Vol 82 (5) ◽  
pp. 2470-2476 ◽  
Author(s):  
Susan Wong ◽  
Ning Zhi ◽  
Claudia Filippone ◽  
Keyvan Keyvanfar ◽  
Sachiko Kajigaya ◽  
...  

ABSTRACT The pathogenic parvovirus B19 (B19V) has an extreme tropism for human erythroid progenitor cells. In vitro, only a few erythroid leukemic cell lines (JK-1 and KU812Ep6) or megakaryoblastoid cell lines (UT7/Epo and UT7/Epo-S1) with erythroid characteristics support B19V replication, but these cells are only semipermissive. By using recent advances in generating large numbers of human erythroid progenitor cells (EPCs) ex vivo from hematopoietic stem cells (HSCs), we produced a pure population of CD36+ EPCs expanded and differentiated from CD34+ HSCs and assessed the CD36+ EPCs for their permissiveness to B19V infection. Over more than 3 weeks, cells grown in serum-free medium expanded more than 800,000-fold, and 87 to 96% of the CD36+ EPCs were positive for globoside, the cellular receptor for B19V. Immunofluorescence (IF) staining showed that about 77% of the CD36+ EPCs were positive for B19V infection, while about 9% of UT7/Epo-S1 cells were B19V positive. Viral DNA detected by real-time PCR increased by more than 3 logs in CD36+ EPCs; the increase was 1 log in UT7/Epo-S1 cells. Due to the extensive permissivity of CD36+ EPCs, we significantly improved the sensitivity of detection of infectious B19V by real-time reverse transcription-PCR and IF staining 100- and 1,000-fold, respectively, which is greater than the sensitivity of UT7/Epo-S1 cell-based methods. This is the first description of an ex vivo method to produce large numbers of EPCs that are highly permissive to B19V infection and replication, offering a cellular system that mimics in vivo infection with this pathogenic human virus.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4241-4241
Author(s):  
Stefan H. Faderl ◽  
Quin Van ◽  
Patricia E. Koch ◽  
David M. Harris ◽  
Inbal Hallevi ◽  
...  

Abstract Novel immunochemotherapy regimens combined with imatinib mesylate (IA) have significantly improved treatment outcome of Ph+ ALL. Nevertheless, most adult patients with Ph+ ALL relapse and succumb to their disease. Recent reports suggested that Jak-2 is engaged in the signaling of Bcr-Abl in chronic myelogenous leukemia (CML) cells. Because Jak-2 inhibitory agents are currently investigated in clinical trials, we sought to explore the role of Jak-2 in the signaling of Bcr-Abl in Ph+ ALL assuming that inhibition of Jak-2 might be beneficial in the treatment of Ph+ ALL. To do this, we used our Ph+ (p190) ALL cell lines Z-119 and Z-181 (Estrov et al. J Cell Physiol166: 618, 1996). We chose these cells because in both lines Jak-2 can be activated. Both Z-119 and Z-181 cells express granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors and GM-CSF activates Jak-2 and stimulates the proliferation of both cell lines. Using a clonogenic assay, we found that IA inhibited the proliferation of these cells at concentrations ranging from 50 to 500 nM. Because Bcr-Abl was found to activate the signal transducer and activator of transcription (STAT)-5 in CML cells, we used Western immunoblotting and found that IA inhibited the phosphorylation (p) of STAT5 in a dose-dependent manner in Ph+ ALL cells. To test whether JAk-2 plays a role in Bcr-Abl (p190) signaling we incubated Z-181 cells for 4 hours with or without 50, 100, 250, and 500 nM IA, extracted cellular protein and immunoprecipitated total STAT5 protein. Then, using Western immunoblotting we detected the Bcr-Abl p190 protein in all STAT5 immunoprecipitates and by using specific pSTAT5 antibodies, we demonstrated that IA induced a dose-dependent reduction in the levels of pSTAT5, but not of p190 protein, suggesting that the p190 Bcr-Abl kinase binds to and activates STAT5. Remarkably, neither Jak-2 nor pJak-2 was detected in either immunoprecipitate. To further delineate the role of Jak-2 in Bcr-Abl signaling we extracted protein from Z-181 cells and immunoprecipitated Jak-2. Neither Bcr-Abl nor STAT5 was detected in these immunoprecipitates, confirming that Jak-2 does not bind Bcr-Abl p190 protein and does not participate in the activation of STAT5. Taken together, our data suggest that Bcr-Abl (p190) binds and phosphorylates STAT5 whereas, Jak-2 is not engaged in Bcr-Abl (p190) signaling in Ph+ ALL cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3773-3773
Author(s):  
Nina Mohell ◽  
Charlotta Liljebris ◽  
Jessica Alfredsson ◽  
Ylva Lindman ◽  
Maria Uustalu ◽  
...  

Abstract Abstract 3773 Poster Board III-709 Introduction The tumor suppressor protein p53 induces cell cycle arrest and/or apoptosis in response to various forms of cellular stress, through transcriptional regulation of a large number of down stream target genes. p53 is frequently mutated in cancer, and cancer cells carrying defects in the p53 protein are often more resistant to conventional chemotherapy. Thus, restoration of the wild type function to mutant p53 appears to be a new attractive strategy for cancer therapy. APR-246 is a novel small molecule quinuclidinone compound that has been shown to reactivate non-functional p53 and induce apoptosis. Although the exact molecular mechanism remains to be determined, recent results suggest that an active metabolite of APR-246 alkylates thiol groups in the core domain of p53, which promotes correct folding of p53 and induces apoptosis (Lambert et al., Cancer Cell 15, 2009). Currently, APR-246 is in Phase I/IIa clinical trials for hematological malignancies and prostate cancer. In the present abstract results from in vitro, ex vivo and in vivo preclinical studies with APR-246 are presented. Results The lead compound of APR-246, PRIMA-1 (p53 reactivation and induction of massive apoptosis), was originally identified by a cellular screening of the NCI library for low molecular weight compounds (Bykov et al., Nat. Med., 8, 2002). Further development and optimization of PRIMA-1 led to the discovery of the structural analog APR-246 (PRIMA-1MET), with improved drug like and preclinical characteristics. In in vitro experiments APR-246 reduced cell viability (WST-1 assay) in a large number of human cancer cell lines with various p53 status, including several leukemia (CCRF-CEM, CEM/VM-1, KBM3), lymphoma (U-937 GTP, U-937-vcr), and myeloma (RPMI 8226/S, 8226/dox40, 8226/LR5) cell lines, as well as many solid cancer cell lines, including osteosarcoma (SaOS-2, SaOS-2-His273,U-2OS), prostate (PC3, PC3-His175, 22Rv1), breast (BT474, MCF-7, MDA-MB-231), lung (H1299, H1299-His175) and colon cancer (HT-29). In human osteosarcoma cell lines APR-246 reduced cell viability and induced apoptosis (FLICA caspase assay) in a concentration dependent manner being more potent in the p53 mutant (SaOS-2-His273) than in the parental p53 null (SaOS-2) cells. The IC50 values (WST-1 assay) were 14 ± 3 and 27 ± 5 μM, respectively (n=35). In in vivo subcutaneous xenograft studies in SCID (severe combined immunodeficiency) mice APR-246 reduced growth of p53 mutant SaOS-2-His273 cells in a dose-dependent manner, when injected i.v. twice daily with 20 -100 mg/kg (64 – 76% inhibition). An in vivo anticancer effect of APR-246 was also observed in hollow-fiber test with NMRI mice using the acute myeloid leukemia (AML) cell line MV-4-11. An ex vivo cytotoxic effect of APR-246 and/or its lead compound PRIMA-1 has also been shown in primary cells from AML and CLL (chronic lymphocytic leukemia) patients, harbouring both hemizygously deleted p53 as well as normal karyotype (Nahi et al., Br. J. Haematol., 127, 2004; Nahi et al., Br. J. Haematol., 132, 2005; Jonsson-Videsater et al., abstract at this meeting). APR-246 was also tested in a FMCA (fluorometric microculture assay) test using normal healthy lymphocytes (PBMC) and cancer lymphocytes (CLL). It was 4-8 fold more potent in killing cancer cells than normal cells, indicating a favorable therapeutic index. This is in contrast to conventional cytostatics that often show negative ratio in this test. Furthermore, when tested in a well-defined panel of 10 human cancer cell lines consisting of both hematological and solid cancer cell lines, the cytotoxicity profile/activity pattern of APR-246 differed from common chemotherapeutic drugs (correlation coefficient less than 0.4), suggesting a different mechanism of action. Conclusion In relevant in vitro, in vivo and ex vivo cancer models, APR-246 showed unique pharmacological properties in comparison with conventional cytostatics, by being effective also in cancer cells with p53 mutations and by demonstrating tumor specificity. Moreover, in experimental safety/toxicology models required to start clinical trials, APR-246 was non toxic at the predicted therapeutic plasma concentrations. Thus, APR-246 appears to be a promising novel anticancer compound that may specifically target cancer cells in patients with genetic abnormality associated with poor prognosis. Disclosures: Mohell: Aprea AB: Employment. Liljebris:Aprea AB: Employment. Alfredsson:Aprea AB: Employment. Lindman:Aprea AB: Employment. Uustalu:Aprea AB: Employment. Wiman:Aprea AB: Co-founder, shareholder, and member of the board. Uhlin:Aprea AB: Employment.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4981-4991 ◽  
Author(s):  
Krisztina Futosi ◽  
Tamás Németh ◽  
Robert Pick ◽  
Tibor Vántus ◽  
Barbara Walzog ◽  
...  

Abstract Dasatinib is a tyrosine kinase inhibitor used to treat imatinib-resistant chronic myeloid leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia. At present, little is known about how dasatinib influences nonmalignant cells. In the present study, we tested the effect of dasatinib on functional responses of normal mature human neutrophils. Dasatinib completely blocked integrin- and Fc-receptor–mediated neutrophil functions, with the lowest IC50 values below 10nM under serum-free conditions. Dasatinib caused a partial inhibition of neutrophil responses triggered by G-protein–coupled receptors and had a moderate effect on neutrophil responses triggered by microbial compounds. Whereas dasatinib inhibited neutrophil chemotaxis under static conditions in 2 dimensions, it did not affect migration under flow conditions or in 3-dimensional environments. Dasatinib did not have any major effect on phagocytosis or killing of bacteria by neutrophils. Adhesion of human neutrophils in the presence of whole serum was significantly inhibited by 50-100nM dasatinib, which corresponds to the reported serum concentrations in dasatinib-treated patients. Finally, ex vivo adhesion of mouse peripheral blood neutrophils was strongly reduced after oral administration of 5 mg/kg of dasatinib. Those results suggest that dasatinib treatment may affect the proinflammatory functions of mature neutrophils and raise the possibility that dasatinib-related compounds may provide clinical benefit in neutrophil-mediated inflammatory diseases.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3569-3569
Author(s):  
A. Jimeno ◽  
A. Chan ◽  
X. Zhang ◽  
J. Wheelhouse ◽  
A. Solomon ◽  
...  

3569 Background: Plk1 is a key mitotic regulator of the transition through the G2/M checkpoint in the cell cycle. This work aimed to evaluate the activity of ON 01910.Na, a Plk1 pathway modulator, in in vitro and in vivo models of pancreatic cancer (PaCa) and to discover biomarkers predictive of efficacy. Methods: ON 01910.Na was tested in 12 PaCa cell lines. Studies assessing Plk1 related markers were conducted to identify biomarkers. For validation a live collection of PaCa xenografts from fresh tumor samples obtained at the time of surgical resection was used (PancXenoBank). The ex vivo assay was based on fine-needle aspirate (FNA) biopsies. Results: ON 01910.Na showed equal activity to gemcitabine against PaCa cell lines. The activity of ON 01910.Na correlated with suppression of two downstream mediators of PLK1, CDC25C and cyclin B1 (by mRNA and protein). ON 01910.Na was tested in xenografts from representative pancreatic cell lines. The selected markers were evaluated in an ex vivo assay, using intra-tumor pharmacokinetics to select the dose of the assay. Cyclin B1 mRNA evaluation yielded the most optimal combination of accuracy and reproducibility. Knockdown of cyclin B1 by siRNA had no effect per se or in the response of the resistant MiaPaca2 to either of the drugs. We next used the ex vivo assay to profile ten patient-derived cases from the PancXenoBank. Two cases were catalogued as potential responders. From each of these ten cases, a group of mice bearing at least 20 tumors received vehicle or ON 01910.Na for 28 days. There was a correlation between the ex vivo cyclin B1 assay and the sensitivity to the tested agent, as the 2 cases prospectively identified as sensitive met pre-specified criteria for response. Of the 8 tumors predicted to be resistant, only one was sensitive. In IHC testing cases showing ex vivo cyclin B1 down-regulation had also decreases in cyclin B1 protein, and there was a correlation between activity and IHC changes in cyclin B1. Conclusions: ON 01910.Na demonstrated significant activity in a preclinical model of PaCa. A rationally designed ex vivo cyclin B1-based assay not only identified cases sensitive to ON 01910.Na, but also replicated the pharmacodynamic events occurring after in vivo exposure. No significant financial relationships to disclose.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2737-2737
Author(s):  
Mirna Golemovic ◽  
Miloslav Beran ◽  
Francis Giles ◽  
Taghi Manshouri ◽  
Deborah Thomas ◽  
...  

Abstract Imatinib mesylate is effective against Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) but, when used as a single agent, responses are transient and most patients relapse within 4–6 months. AMN107 is a novel oral aminopyrimidine ATP-competitive inhibitor of the protein tyrosine kinase activity of Bcr-Abl. Following oral administration to animals, AMN107 is well absorbed, has a good pharmacokinetic profile, and is well tolerated. The activity of AMN107, relative to imatinib, in both Ph-positive (Z-119 and Z-181) and Ph-negative (Z-138) ALL cell lines was studied. Z-119 and Z-181 cells were derived from Ph-positive ALL patients and retained typical B-cell characteristics and phenotypes of the original leukemia, including cytogenetic abnormality t(9;22) and p190 Bcr/Abl kinase. Z-138, a Ph-negative cell line, was derived from a patient with chronic lymphocytic leukemia and supervening ALL. Treatment with AMN107 or imatinib for 3 days (MTS assay) inhibited proliferation of Z-119 cells with the IC50 values of 19.3 nM and 620.0 nM, respectively, revealing AMN107 to be 32 fold more potent than imatinib. Treatment of Z-181 cell line lasted for 4 days (MTS assay) because of lower growth rate of these cells: IC50 for AMN107 and imatinib were 1.6 nM and 63.9 nM, respectively, showing AMN107 to be 40 fold more potent than imatinib. Neither drug showed activity against Ph-negative Z-138 cells. We also compared the activity of AMN107 in Ph-positive ALL cell lines expressing p190 Bcr/Abl protein to that in Ph-positive chronic myeloid leukemia cell lines KBM5 and KBM7 expressing p210 Bcr/Abl protein. The activity was similar with IC50 in KBM5 cells of 11.3 nM and in KBM7 cells of 4.3 nM. In experiments focused on cell cycle analysis we found that at equipotent doses (as determined by MTS assay) both drugs induced cell accumulation in G0/G1 phase in Z-119 but not in Z-181. We demonstrated that increasing equipotent concentrations of AMN107 and imatinib induced activation of caspase-3 that resulted in apoptosis, as assessed by propidium iodide staining, in Z-119 cells, while Z-181 cells showed lack of apoptotic response. Following treatment with a broad range of AMN107 and imatinib doses for 3 hrs, Bcr/Abl expression and phosphorylation were determined in Z-119 cells by immunoprecipitation and Western blotting: Bcr/Abl phosphorylation was inhibited completely with AMN107 at 125.0 nM, and with imatinib at 2500 nM, confirming again the higher potency of AMN107. Finally, similar differential effect of AMN107 and imatinib on Bcr/Abl protein expression and phosphorylation was observed in leukemic cells obtained from blood of Ph-positive ALL patients. We conclude that AMN107 has significant activity against Ph-positive ALL cells and warrants investigation in patients with Ph-positive ALL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 153-153 ◽  
Author(s):  
Stefan Faderl ◽  
William Bornmann ◽  
David Maxwell ◽  
Ashutosh Pal ◽  
Zheng-Hong Peng ◽  
...  

Abstract Tight control of protein tyrosine kinase (TK) activity is crucial for the regulation and maintenance of vital cellular functions such as proliferation, differentiation, and apoptosis. c-KIT is a TK and transmembrane receptor for stem cell factor (SCF). Binding of SCF to c-KIT results in activation of marrow precursors and other blood cells. Activating mutations of c-KIT associated with amino acid Asp-816 (D816) have been identified in leukemic cells of patients with AML and are thought to play an important pathophysiologic role in leukemogenesis. Identification of activating c-KIT mutations and development of novel compounds targeting these mutations may therefore be of therapeutic benefit in AML. Based on the 3-dimensional structure of c-KIT we have generated a number of compounds with activity against c-KIT mutated cells. Here we present initial results of the activity and mechanism of action of the novel c-KIT inhibitor APCK110 in AML cell lines and primary samples from patients with AML. Using an MTT assay, we first studied the antiproliferative effect of APCK110 in the AML cell lines OCI/AML3 and the SCF-responsive cell line OCIM2. Cells were incubated for 72 hours without or with APCK110 at concentrations of 50, 100, 250, and 500 nM, then harvested and their metabolic activity and viability determined as optical density. Next we determined expression of phospho-AKT and -STAT3 in the mastocytosis cell line HMC1.1 and phospho-c-KIT in the AML cell line OCI/AML3 by Western Immunoblotting. We further analyzed induction of caspase 3 and PARP cleavage in OCI/AML3 cells at APCK110 concentrations of 50, 100, 250, and 500 nM using Western Immunoblotting. To demonstrate the effect of APCK110 on primary AML cells, we incubated diagnostic marrow cells from 3 patients with AML with increasing concentrations of APCK110 and used the blast colony assay to measure inhibition of proliferation. We then compared the antiproliferative effect of APCK110 with that of dasatinib and imatinib in OCI/AML3 cells. We show that 1) APCK110 strongly inhibits proliferation of AML cells with 80% inhibition at 500 nM; 2) similar to cell lines, APCK110 also inhibits AML colony growth of primary samples in a dose-dependent manner of up to 80% at 500 nM concentration; 3) APCK110 blocks activation of phospho-AKT, phospho-STAT3, and phospho-c-KIT; 4) APCK110 induces apoptosis by cleavage of caspase 3 and PARP; and 5) APCK110 demonstrates more potent inhibition (up to 100% at 500 nM) of AML cell proliferation than dasatinib (60% at 500 nM) and dasatinib (none at 500 nM). In summary, APCK110 is a novel and potent inhibitor of mutated c-KIT that inhibits AML cell proliferation, blocks activation of intracellular signaling molecules, and induces caspase-dependent apoptosis. Further development of APCK110 for clinical trials of patients with AML should be pursued.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 856-856
Author(s):  
Simone Boehrer ◽  
Lionel Ades ◽  
Claire Fabre ◽  
Pierre Fenaux ◽  
Guido Kroemer

Abstract Background: the epidermal-growth-factor-receptor (EGFR)-inhibitor erlotinib was rationally designed to antagonize the deregulated EGFR-activity in solid tumors. Abundant studies in these entities not only demonstrated clinical efficacy, but also a favorable toxicity profile. In particular the absence of hematopoietic toxicity prompted us to investigate the therapeutic potential of erlotinib in MDS and AML cells. Methods: We incubated ex vivo cells from patients with MDS (n=4, 2 lower risk and 2 higher risk) and AML (n=6, de novo: 3; post MDS: 3), as well as a broad spectrum of myeloid cell lines (P39, KG-1, HL-60, MV4-11, MOLM-13) with increasing dosages of erlotinib (1μM to 10μM). As controls (n=4) we used non-malignant CD34 + bone marrow cells. Before incubation, all ex vivo cells underwent CD34 + selection. Serial FACS-analyses of parameters determining apoptosis (DIOC/PI and AnnexinV/PI) were carried out over a maximum of 6 days. Results: We found that erlotinib was able to induce a considerable degree of apoptosis in MDS and AML cells. Although there was a high interindividual difference in sensitivity towards erlotinib, “responders” treated with 10μM erlotinib showed an increase of apoptotic cells between 20–30% after 72h, which reached a maximum of 60% on day 6. This apoptosis-inducing effect was achieved in a dose-dependent manner and not restricted to a specific entity. Noteworthy, erlotinib exhibited no toxicity towards non-neoplastic progenitor cells. Evaluating the molecular mechanisms determining sensitivity we showed that the apoptosis-inducing effect of erlotinib critically depended on the expression level of NPM. Thus erlotinib-resistant myeloid cell lines (i.e. P39) exhibited a higher epression of NPM than sensitive cell lines (i.e. KG-1). In addition, down-regulation of NPM by small-interfering RNA not only increased the apoptosis-inducing effect of erlotinib in sensitive cells, but moreover established sensitivity in otherwise erlotinib-resistant cells. Accordingly, siRNA-induced down-regulation of NPM in P39 cells elevated the percentage of apoptotic cells upon treatment with 10μM erlotinib by about 30% as compared to mock-transfected controls. Conclusion, we showed an off-target effect of erlotinib, as evidenced by its ability to induce apoptosis in EGFR-negative cells. Of particular interest is the observation that erlotinib induced apoptosis exclusively in neoplastic myeloid cells while sparing non-malignant progenitors. To the best of our knowledge, this is the first report providing evidence for the therapeutic potential of erlotinib in MDS and AML.


Author(s):  
Vishnu T Santhosh ◽  
Palaniswamy Muthusamy

  Objectives: This study investigates the in vitro anticancer activity of the violacein extracted from the Chromobacterium vaccinii CV5.Methods: Natural colorants or dyes derived from flora to fauna are believed to be safe because of nontoxic, noncarcinogenic, and biodegradable in nature. There are a number of natural pigments, but only a few are available in sufficient quantities for industrial production. The cytotoxicity activity of pigment was assessed against the cervical (HeLa) and lung cancer (A549) cell lines using the MTT assay and there by potential cytotoxic activity exhibited by the pigment was identified.Results: The result of the pigment shows potent anticancer activity on the two cancer cell lines tested in a concentration dependent manner. The potent anticancer activity was observed with the pigment with IC50 values of 26 μg/mL on HeLa and 31 μg/mL on A549 cells, respectively.Conclusion: The study is pioneering report for determining the better in vitro anticancer activity of violacein from the novel isolate C. vaccinii CV5.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Xu ◽  
Lihua Zhu ◽  
Yan Wang ◽  
Yawei Shi ◽  
Aihua Gong ◽  
...  

Purpose. Signal transducer and activator of transcription factor 3 (STAT3) is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3) on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC) cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.


Sign in / Sign up

Export Citation Format

Share Document