MicroRNAs in Normal Human Terminal Granulocytic Differentiation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1463-1463
Author(s):  
Su Ming Sun ◽  
Menno K Dijkstra ◽  
André C Bijkerk ◽  
Rik Brooijmans ◽  
Peter J Valk ◽  
...  

Abstract Abstract 1463 Poster Board I-486 Normal human myelopoiesis is a complex biological process, where the balance between cell proliferation, differentiation and apoptosis is tightly regulated by a transcriptional program that results in the production of appropriate numbers of circulating mature myeloid cells. MicroRNAs (miRNAs) are small non-coding RNAs of 18∼25 nt that can affect cellular protein levels. Several studies show specific miRNA expression patterns in different subtypes of myeloid malignancies, however only limited data is available on miRNA expression patterns during normal myeloid differentiation of primary human cells. We set out to characterize miRNA expression patterns in the different stages of granulocytic differentiation in two models. First myeloblast, promyelocytes, metamyelocytes and granulocytes from normal human bone marrow were cell-sorted with flow cytometry using the markers CD10, CD11, CD34, CD36, CD45 and CD117. Second, CD34+ cells from primary human fetal livers were differentiated in vitro towards neutrophils. MiRNA expression levels were determined at different time points (day 0, 3 and 10), representing different stages of granulocytic differentiation. MiRNA expression was measured using the qPCR platform, containing 365 miRNAs, from Applied Biosystems. To identify potential miRNA target genes, we performed mRNA expression profiling in the latter in vitro differentiation. The negative correlations between miRNA and mRNA expression were identified and integrated with a target prediction database (Targetscan). The miRNA profiling showed that approximately 70% of the 365 miRNAs analyzed, were expressed during granulocytic differentiation and that the miRNA expression pattern during this process change significantly in both models. Principal component analysis showed clear separation of the different subsets of granulopoiesis based on the miRNA expression. We determined the differentially expressed miRNAs between the various subsets using ANOVA with a P value <0.05, after correction for multiple testing. We found 24 miRNAs to be differentially upregulated in the both models. The top 5 upregulated miRNA, with the highest fold change in granulocytes as compared to myeloblasts, were miR-223, miR-145, miR-148, miR-24 and miR-23a. We identified 27 miRNAs that were downregulated, the top 5 were of miR-10a, miR-196a, miR-130a, miR-135a and miR-125b. Concomitant miRNA and mRNA expression analysis of the in vitro model with the Targetscan database, demonstrates a potential regulatory role for these miRNAs in various processes, such as cell proliferation, apoptosis and cell cycle regulation. For example, miR-130a, miR-20b and miR-191, miR-301 expression levels were negatively correlated with E2F2 and SOX4 respectively. Furthermore, MAPK1 levels correlated inversely with miR-17-5p, miR-130a, miR-181b, miR-181d and miR-20b. We observed potential regulation of BCL2L11 by miR-10a, miR-10b and CDK6 by miR-148a, miR-148b, miR-191 and miR-21, as well as CHEK1 by the miR-15a and miR-16, LATS2 by miR-142-3p and CCND3 by miR-133a. In addition we also identified myeloid specific genes to be potentially regulated by miRNAs such as CEBPA by miR-181b, KIT by miR-148a, miR-148b and miR-301 and RUNX3 by miR-301. This is the first comprehensive study of miRNA expression in normal human granulocytic differentiation. We show in two models that the miRNA expression pattern changes during granulocytic differentiation. miRNA-mRNA analyses suggest involvement of miRNAs in regulation of important cellular processes during granulocytic differentiation. Experimental validations of several candidate targets as well as functional studies are currently ongoing. Disclosures No relevant conflicts of interest to declare.

2011 ◽  
Vol 79 (4) ◽  
pp. 1597-1605 ◽  
Author(s):  
Md A. Nahid ◽  
Mercedes Rivera ◽  
Alexandra Lucas ◽  
Edward K. L. Chan ◽  
L. Kesavalu

ABSTRACTPorphyromonas gingivalis,Treponema denticola, andTannerella forsythiaare periodontal pathogens associated with the etiology of adult periodontitis as polymicrobial infections. Recent studies demonstrated that oral infection withP. gingivalisinduces both periodontal disease and atherosclerosis in hyperlipidemic and proatherogenic ApoE−/−mice. In this study, we explored the expression of microRNAs (miRNAs) in maxillas (periodontium) and spleens isolated from ApoE−/−mice infected withP. gingivalis,T. denticola, andT. forsythiaas a polymicrobial infection. miRNA expression levels, including miRNA miR-146a, and associated mRNA expression levels of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) were measured in the maxillas and spleens from mice infected with periodontal pathogens and compared to those in the maxillas and spleens from sham-infected controls. Furthermore, in response to these periodontal pathogens (as mono- and polymicrobial heat-killed and live bacteria), human THP-1 monocytes demonstrated similar miRNA expression patterns, including that of miR-146a,in vitro. Strikingly, miR-146a had a negative correlation with TNF-α secretionin vitro, reducing levels of the adaptor kinases IL-1 receptor-associated kinase 1 (IRAK-1) and TNF receptor-associated factor 6 (TRAF6). Thus, our studies revealed a persistent association of miR-146a expression with these periodontal pathogens, suggesting that miR-146a may directly or indirectly modulate or alter the chronic periodontal pathology induced by these microorganisms.


2009 ◽  
Vol 27 (6) ◽  
pp. 255-268 ◽  
Author(s):  
Emanuela Boštjančič ◽  
Nina Zidar ◽  
Damjan Glavač

MicroRNAs (miRNAs), small non-coding RNA molecules, are negative regulators of gene expression. Recent studies have indicated their role in various forms of cardiovascular disease. In spite of the number of miRNA microarray analyses performed, little is known about the genome-wide miRNA expression pattern in human myocardial infarction (MI). Using miRNA microarrays and bioinformatic analysis, miRNA expression was analyzed on human MI and foetal hearts compared to healthy adult hearts, to determine whether there is any similar expression pattern between MI and foetal hearts, and to identified miRNAs that have not previously been described as dysregulated in cardiovascular diseases. Of 719 miRNAs analyzed, ∼ 50% were expressed in human hearts, 77 miRNAs were absent from all tested tissues and 57 were confidently dysregulated in at least one tested group. Some expression patterns appeared to be similar in MI and foetal hearts. Bioinformatic analysis revealed 10 miRNAs as dysregulated in MI not yet related to cardiovascular disease, and 5 miRNAs previously described only in animal models of cardiovascular diseases. Finally, qRT-PCR analysis confirmed dysregulation of 7 miRNAs,miR-150, miR-186, miR-210, miR-451, and muscle-specific, miR-1 and miR-133a/b; all of these are believed to be involved in various physiological and pathological processes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4189 ◽  
Author(s):  
Yao Fu ◽  
Jia-Jun Xu ◽  
Xu-Lei Sun ◽  
Hao Jiang ◽  
Dong-Xu Han ◽  
...  

Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC) differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV), MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05), and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc) after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the efficiency ofin vitroembryo culture as well as a theoretical basis for further studying the regulatory mechanisms involved in early embryonic development.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2631-2631
Author(s):  
Farhad Akbari Moqadam ◽  
Ellen Lange-Turenhout ◽  
Arian van der Veer ◽  
João R.M. Marchante ◽  
Rob Pieters ◽  
...  

Abstract Childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous disease in which the 5-years event-free survival rates are currently above 80%. We recently identified a poor prognostic set of patients within unclassified BCP-ALL patients. These patients have a high risk of relapse and a gene expression profile similar to BCR-ABL1-positive ALL cases. This so-called BCR-ABL1-like (or Ph-like) group of patients showed similar high frequencies of deletion in B-cell development genes (den Boer et al, Lancet Oncology, 2009 and Mullighan et al. New Eng J Med, 2009). Here, we investigate the miRNA expression pattern in BCR-ABL1-like ALL. Further, we addressed whether altered expression levels of discriminative miRNAs of BCR-ABL1-like ALL has prognostic importance. MiRNA expression levels of leukemic cells of 91 newly identified children with BCP-ALL: i.e. 15 BCR-ABL1-like, 14 BCR-ABL1-positive, 9 TCF3-rearranged, 14 hyperdiploid (>50 chromosomes), and 15 B-other patients (negative for BCR-ABL1-like ALL and other known genetic lesions) were measured by Taqman® Array Human miRNA cards (TLDA cards, Applied Biosystems). Using the R statistics program (R-2.15, release June 2012), the Limma package was applied to compare the expression levels of miRNAs between the groups. Each genetic subtype was compared to the remaining cases to identify subtype-specific miRNAs. Our data revealed that children with ETV6-RUNX1-positive, hyperdiploid, TCF3-rearranged and MLL-rearranged ALL demonstrate a subtype-specific miRNA signature. In contrast, BCR-ABL1-positive and BCR-ABL1-like cases showed a more variable miRNA expression pattern, resulting in 2 clusters of patients. The majority of the children with BCR-ABL1-like ALL (11 out of 15) showed a miRNA expression pattern different from that of BCR-ABL1-negative genetic subtypes of pediatric BCP-ALL and cluster with 43% of BCR-ABL1-positive patients (6 out of 14, cluster-I). The remaining 8 BCR-ABL1-positive and 4 BCR-ABL1-like cases showed more heterogeneous expression patterns (cluster-II). The prognosis of patients in both clusters, however, did not differ. Similarly, there was no significant difference in IKZF1, PAX5, JAK2 or CDKN2A/B status between these two clusters. Top-10 most differentially expressed miRNAs of the children with BCR-ABL1-like ALL were miR-324-5p, miR-345, miR-190, miR-130a, miR-545, miR-152, miR-103, miR-191, miR-197 and miR-101. None of these discriminative miRNAs was predictive for clinical outcome of BCR-ABL1-like patients. In conclusion, our data suggest that a miRNA signature is not suitable to dissect good and poor prognostic BCR-ABL1-like cases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3346-3346
Author(s):  
Jasmin Batliner ◽  
Mathias Jenal ◽  
Martin F. Fey ◽  
Mario P. Tschan

Abstract MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Recent studies showed that they are critically involved in hematopoietic differentiation and function by a coordinating multi-target repression of hematopoiesis-related genes. To identify miRNAs involved in the pathogenesis of acute promyelocytic leukemia (APL), characterized by the t(15;17) translocation, we performed TaqMan Low Density Array-based miRNA expression profiling on blast cells from an APL patient under all-trans retinoic acid (ATRA) treatment. Although recent reports investigated miRNA expression patterns in APL blast cells and cell lines subjected to ATRA in vitro, to our knowledge this is the first study that relies on cells from an APL patient treated with ATRA in vivo. Since the downregulation of the PML-RARA transcript cannot be assessed within a time period of a few days, we monitored effective ATRA treatment by measuring mRNA downregulation of the panleukemic marker Wilms’ tumor (WT)-1. WT1 mRNA levels decreased 64% and 92% at day 3 and 6 upon ATRAtherapy, respectively. Total RNA obtained at diagnosis and at days 3/6 following ATRA therapy were screened for expression patterns of 384 human miRNAs including two endogenous controls, RNU44 and RNU48, for normalization of miRNA expression. Since these controls were regulated upon ATRA treatment, we normalized miRNA expression to miR-93, which showed stable expression in our samples. Consistent with previous in vitro APL miRNA profiling data, the granulocyte-specific miR-223 was induced 6.6-fold at day 6 upon ATRA treatment. For further analysis, we focused on two hematopoietic lineage-specific miRNAs, miR-29c and miR-424 that have not yet been associated with neutrophil development. miR-29c and miR-424 were upregulated 6.5- and 6.0-fold at day 6 in response to ATRA, respectively. Induction of these miRNAs was confirmed by individual real-time RT-PCR assays. Moreover, expression of miR-29c and miR-424 was further investigated in NB4 and HT93 APL cell lines. In both cell lines, miR-424 was upregulated in response to ATRA similar to the patient samples, suggesting a role for miR-424 in granulocytic differentiation in addition to that described in macrophage development. miR-29c, however, showed an upregulation in HT93 but not in NB4 cells implying cell type specific regulation. Additionally, we tested the involvement of miR- 29c in macrophage differentiation of HL60 leukemic cells using phorbol 12-myristate 13-acetate (PMA) as a differentiating agent. Interestingly, miR-29c showed an 8.0- fold upregulation similar to an 8.7-fold induction of miR-424, a known target of the transcription factor PU.1 upon PMA treatment. Based on the similar regulation of miR-29c and miR-424 and the presence of several putative PU.1 binding elements in the miR-29c promoter, we are currently investigating whether miR-29c is a novel transcriptional target of PU.1. A confirmed target of miR-29c is the protein DNA methyltransferase (DNMT 3A and 3B), which is overexpressed in myeloid leukemias. Therefore, induction of miR-29c during myelopoiesis might be needed to target DNMT. In conclusion, we propose a novel association of miR-29c and miR-424 with ATRA-induced neutrophil differentiation.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic &#946;-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in &#946;-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of &#946;-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into &#946;-cells, resulting in enhanced &#946;-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of &#946;-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived &#946;-cells to therapeutically relevant outputs will be discussed as well.


2020 ◽  
Vol 21 (6) ◽  
pp. 2060
Author(s):  
Ming-Chao Tsai ◽  
Chao-Cheng Huang ◽  
Yu-Ching Wei ◽  
Ting-Ting Liu ◽  
Ming-Tsung Lin ◽  
...  

Chibby is an antagonist of β-catenin and is considered a potential tumor suppressor protein, but the role of Chibby in hepatocellular carcinoma (HCC) has not been characterized. The expression patterns of Chibby and β-catenin in HCC specimens and paired adjacent noncancerous tissues were measured by Western blotting and immunohistochemistry. The correlations between Chibby expression and clinicopathological parameters were analyzed. Then the biological functions of Chibby were analyzed in vitro. The Chibby protein was significantly downexpressed in human primary HCC tissues compared to that in matched adjacent normal liver tissue and is a risk factor for HCC recurrence and shorter survival. Furthermore, we found that in HCC tissues the high expression of β-catenin with low expression of Chibby in the nuclei was an independent predictor for disease-free survival (DFS) (p = 0.012) and overall survival (OS) (p = 0.005). Subsequent genetic manipulation in vitro studies revealed that Chibby knockdown induced the expression of β-catenin and C-myc, cyclin D1 protein, which promoted cell proliferation and invasiveness. In contrast, overexpression of Chibby decreased β-catenin expression and inhibited the cell proliferation and invasiveness. Our results suggest that low expression of Chibby was associated with advanced tumor-node-metastasis (TNM) stage and poor differentiation. Furthermore, the combination of Chibby and β-catenin can predict poor prognosis in patients with HCC. Chibby inhibited HCC progression by blocking β-catenin signaling in vitro. Chibby is a biomarker and may be a potential therapeutic target for HCC.


2018 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Carrie Wright ◽  
Karen Fox-Talbot ◽  
Anandita Rajpurohit ◽  
Courtney Williams ◽  
...  

AbstractAccurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.


Sign in / Sign up

Export Citation Format

Share Document