scholarly journals LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis

2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Xiaohui Pan ◽  
Jin Guo ◽  
Canjun Liu ◽  
Zhanpeng Pan ◽  
Zhicheng Yang ◽  
...  

Abstract Background Osteosarcoma (OS) is a common primary bone malignancy. Long noncoding RNA HCG18 is known to play an important role in a variety of cancers. However, its role in OS and relevant molecular mechanisms are unclear. Methods Real-time quantitative PCR was performed to determine the expression of target genes. Function experiments showed the effects of HCG18 and miR-365a-3p on OS cell growth. Results HCG18 expression was increased in OS cell lines. Moreover, in vitro and in vivo experiments demonstrated that HCG18 knockdown inhibited OS cell proliferation. Mechanistically, HCG18 was defined as a competing endogenous RNA by sponging miR-365a-3p, thus elevating phosphoglycerate kinase 1 (PGK1) expression by directly targeting its 3ʹUTR to increase aerobic glycolysis. Conclusion HCG18 promoted OS cell proliferation via enhancing aerobic glycolysis by regulating the miR-365a-3p/PGK1 axis. Therefore, HCG18 may be a potential target for OS treatment.

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun Wang ◽  
Jia-Huan Lu ◽  
Qi-Nian Wu ◽  
Ying Jin ◽  
De-Shen Wang ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. Methods We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo. Results LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N6-methyladenosine (m6A) ‘reader’. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models. Conclusion LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.


2021 ◽  
Vol 23 (1) ◽  
pp. 129
Author(s):  
Huinan Qu ◽  
Da Qi ◽  
Xinqi Wang ◽  
Yuan Dong ◽  
Qiu Jin ◽  
...  

Claudin 6 (CLDN6) was found to be a breast cancer suppressor gene, which is lowly expressed in breast cancer and inhibits breast cancer cell proliferation upon overexpression. However, the mechanism by which CLDN6 inhibits breast cancer proliferation is unclear. Here, we investigated this issue and elucidated the molecular mechanisms by which CLDN6 inhibits breast cancer proliferation. First, we verified that CLDN6 was lowly expressed in breast cancer tissues and that patients with lower CLDN6 expression had a worse prognosis. Next, we confirmed that CLDN6 inhibited breast cancer proliferation through in vitro and in vivo experiments. As for the mechanism, we found that CLDN6 inhibited c–MYC–mediated aerobic glycolysis based on a metabolomic analysis of CLDN6 affecting cellular lactate levels. CLDN6 interacted with a transcriptional co–activator with PDZ-binding motif (TAZ) and reduced the level of TAZ, thereby suppressing c–MYC transcription, which led to a reduction in glucose uptake and lactate production. Considered together, our results suggested that CLDN6 suppressed c–MYC–mediated aerobic glycolysis to inhibit the proliferation of breast cancer by TAZ, which indicated that CLDN6 acted as a novel regulator of aerobic glycolysis and provided a theoretical basis for CLDN6 as a biomarker of progression in breast cancer.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Jing Zeng ◽  
Xiao Ma ◽  
Jinjing Wang ◽  
Ran Liu ◽  
Yun Shao ◽  
...  

Abstract Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Hydroxysteroid dehydrogenase like 2 (HSDL2) can regulate lipid metabolism and take part in cell proliferation. The purpose of the present study was to explore functional role of HSDL2 gene in PTC. The expression of HSDL2 protein in PTC tissues was estimated using immunohistochemistry analysis (IHC). HSDL2 mRNA level was detected through quantitative real-time polymerase chain reaction (qRT-PCR). Effects of HSDL2 gene on cell proliferation and apoptosis were assessed using the shRNA method for both in vitro and in vivo experiments. Potential target genes of HSDL2 were determined via bioinformatics analyses and Western blotting. HSDL2 was up-regulated in PTC tissues and cell lines compared with the controls (all P<0.05). Inhibiting HSDL expression could suppress PTC cell proliferation and cycle, and promote apoptosis in vitro. In vivo, the knockdown of HSDL2 gene could significantly suppress tumor growth (all P<0.05). Furthermore, AKT3, NFATc2 and PPP3CA genes might be potential targets of HSDL2 in PTC. HSDL2 expression was increased in PTC tissues and cells, which could promote tumor progression in vitro and in vivo.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weiqiang Zhou ◽  
Guocheng Wang ◽  
Bilan Li ◽  
Junjie Qu ◽  
Yongli Zhang

The molecular mechanisms by which uterine leiomyoma (UL) cells proliferate are unclear. Long noncoding RNA (lncRNA) is reported to participate in the occurrence and development of gynecological cancers. We investigated the molecular mechanisms that lncRNA uses in UL. We found that lncRNA Alu-mediated p21 transcriptional regulator (APTR) showed higher expression in UL tumor tissues compared with that in normal uterine tissues. APTR induced cell proliferation and colony formation both in vitro and in vivo. The JASPAR database showed that APTR was likely interacted with ERα, and these molecules were identified via laser scanning confocal microscopy and RNA immunoprecipitation analysis. To verify the correlation between APTR and ERα, we overexpressed and underexpressed APTR and simultaneously expressed ERα. The results showed that APTR function was suppressed. APTR increased the expressions of the proteins in the Wnt pathway, and inhibiting ERα eliminated these responses. In conclusion, our data suggest that APTR promoted leiomyoma cell proliferation through the Wnt pathway by targeting ERα, suggesting a new role of APTR in the Wnt signaling pathway in UL.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Runliu Wu ◽  
Liang Li ◽  
Yang Bai ◽  
Bowen Yu ◽  
Canbin Xie ◽  
...  

Abstract The long noncoding RNA (lncRNA) LUCAT1 was recently reported to be upregulated and to play an essential role in multiple cancer types, especially colorectal cancer (CRC), but the molecular mechanisms of LUCAT1 in CRC are mostly unreported. Here, a systematic analysis of LUACT1 expression is performed with data from TCGA database and clinic CRC samples. LUCAT1 is identified as a putative oncogene, which is significantly upregulated in CRC and is associated with poor prognosis. Loss of LUCAT1 restricts CRC proliferative capacities in vitro and in vivo. Mechanically, NCL is identified as the protein binding partner of LUCAT1 by using chromatin isolation by RNA purification coupled with mass spectrometry (ChIRP-MS) and RNA immunoprecipitation assays. We also show that NCL directly binds to LUCAT1 via its putative G-quadruplex-forming regions from nucleotides 717 to 746. The interaction between LUCAT1 and NCL interferes NCL-mediated inhibition of MYC and promote the expression of MYC. Cells lacking LUCAT1 show a decreased MYC expression, and NCL knockdown rescue LUCAT1 depletion-induced inhibition of CRC cell proliferation and MYC expression. Our results suggest that LUCAT1 plays a critical role in CRC cell proliferation by inhibiting the function of NCL via its G-quadruplex structure and may serve as a new prognostic biomarker and effective therapeutic target for CRC.


2019 ◽  
Vol 116 (28) ◽  
pp. 14019-14028 ◽  
Author(s):  
Hongyu Guan ◽  
Ting Zhu ◽  
Shanshan Wu ◽  
Shihua Liu ◽  
Bangdong Liu ◽  
...  

It is well recognized that metastasis can occur early in the course of lung adenocarcinoma (LAD) development, and yet the molecular mechanisms driving this capability of rapid metastasis remain incompletely understood. Here we reported that a long noncoding RNA, LINC00673, was up-regulated in LAD cells. Of note, we first found that LINC00673-v4 was the most abundant transcript of LINC00673 in LAD cells and its expression was associated with adverse clinical outcome of LAD. In vitro and in vivo experiments demonstrated that LINC00673-v4 enhanced invasiveness, migration, and metastasis of LAD cells. Mechanistically, LINC00673-v4 augmented the interaction between DDX3 and CK1ε and thus the phosphorylation of dishevelled, which subsequently activated WNT/β-catenin signaling and consequently caused aggressiveness of LAD. Antagonizing LINC00673-v4 suppressed LAD metastasis in vivo. Together, our data suggest that LINC00673-v4 is a driver molecule for metastasis via constitutively activating WNT/β-catenin signaling in LAD and may represent a potential therapeutic target against the metastasis of LAD.


2020 ◽  
Vol 15 (1) ◽  
pp. 437-448
Author(s):  
Aimin Wu ◽  
Xuewei Zhou ◽  
Linglong Mi ◽  
Jiang Shen

AbstractLINC00202 is a newly identified long noncoding RNA (lncRNA) and has been demonstrated to involve in the progression of retinoblastoma (RB). Here, we further explored the role and the underlying molecular mechanism of LINC00202 on RB malignant properties and glycolysis. LINC00202, microRNA (miR)-204-5p, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) mRNA were detected by a quantitative real-time polymerase chain reaction. Cell proliferation and apoptosis were analyzed using cell counting kit-8 assay and colony formation assay and flow cytometry, respectively. Glucose metabolism was calculated by measuring the extracellular acidification rate (ECRA). Western blot was used to detect the levels of HMGCR, ki67, pro-caspase-3, cleaved-caspase-3, and lactate dehydrogenase A chain (LDHA). The interaction between miR-204-5p and LINC00202 or HMGCR was analyzed by the dual-luciferase reporter assay. Murine xenograft model was established to conduct in vivo experiments. LINC00202 expression was upregulated in RB tumor tissues and LINC00202 knockdown inhibited RB cell proliferation, glycolysis, and stimulated apoptosis in vitro as well as impeded tumor growth in vivo. MiR-204-5p directly bound to LINC00202 and HMGCR in RB cells, and LINC00202 functioned as a competing endogenous RNA in regulating HMGCR through competitively binding to miR-204-5p. More importantly, the regulation of malignant properties and glycolysis of RB cells mediated by LINC00202 could be reversed by abnormal miR-204-5p or HMGCR expression in RB cells. In all, LINC00202 promoted RB cell proliferation, glycolysis, and suppressed apoptosis by regulating the miR-204-5p/HMGCR axis, suggesting a novel therapeutic target for patients with RB.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjuan Zha ◽  
Xiaomin Li ◽  
Xiaowei Tie ◽  
Yao Xing ◽  
Hao Li ◽  
...  

AbstractThe long noncoding RNASBF2-AS1 can promote the occurrence and development of many kinds of tumours, but its role in oesophageal squamous cell carcinoma (ESCC) is unknown. We found that SBF2-AS1 was up-regulated in ESCC, and its expression was positively correlated with tumor size (P = 0.0001), but was not related to gender, age, TNM stage, histological grade, and lymphnode metastasis (P > 0.05). It was further found that the higher the expression of SBF2-AS1, the lower the survival rate. COX multivariate analysis showed that the expression of SBF2-AS1 was an independent prognostic factor. Functional experiments show that inhibition of SBF2-AS1 can inhibit the proliferation of ESCC through in vivo and in vitro, and overexpression of SBF2-AS1 can promote the proliferation of ESCC and inhibit its apoptosis. In mechanism, SBF2-AS1/miR-338-3P, miR-362-3P/E2F1 axis are involved in the regulation of ESCC growth. In general, SBF2-AS1 may be used as ceRNA to combine with miR-338-3P and miR-362-3P to up-regulate the expression ofE2F1, and ultimately play a role in promoting cancer. It may be used as a therapeutic target and a biomarker for prognosis.


2018 ◽  
Vol 19 (10) ◽  
pp. 3153 ◽  
Author(s):  
J. Muñoz-Bello ◽  
Leslie Olmedo-Nieva ◽  
Leonardo Castro-Muñoz ◽  
Joaquín Manzo-Merino ◽  
Adriana Contreras-Paredes ◽  
...  

The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with β-catenin to promote cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document