scholarly journals Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wan Li ◽  
Yue Chen ◽  
Minghui Ye ◽  
Haibin Lu ◽  
Dongdong Wang ◽  
...  

Abstract Background Plants are easily affected by temperature variations, and high temperature (heat stress) and low temperature (cold stress) will lead to poor plant development and reduce crop yields. Therefore, it is very important to identify resistance genes for improving the ability of plants to resist heat stress or cold stress by using modern biotechnology. Members of the C-repeat binding factor/Dehydration responsive element-binding 1 (CBF/DREB1) protein family are related to the stress resistance of many plant species. These proteins affect the growth and development of plants and play vital roles during environmental stress (cold, heat, drought, salt, etc.). In this study, we identified CBF/DREB1 genes from 43 plant species (including algae, moss, ferns, gymnosperms, angiosperms) by using bioinformatic methods to clarify the characteristics of the CBF/DREB1 protein family members and their functions in potato under heat and cold stresses. Results In this study, we identified 292 CBF/DREB1 proteins from 43 plant species. However, no CBF/DREB1 protein was found in algae, moss, ferns, or gymnosperms; members of this protein family exist only in angiosperms. Phylogenetic analysis of all the CBF/DREB1 proteins revealed five independent groups. Among them, the genes of group I do not exist in eudicots and are found only in monocots, indicating that these genes have a special effect on monocots. The analysis of motifs, gene duplication events, and the expression data from the PGSC website revealed the gene structures, evolutionary relationships, and expression patterns of the CBF/DREB1 proteins. In addition, analysis of the transcript levels of the 8 CBF/DREB1 genes in potato (Solanum tuberosum) under low-temperature and high-temperature stresses showed that these genes were related to temperature stresses. In particular, the expression levels of StCBF3 and StCBF4 in the leaves, stems, and roots significantly increased under high-temperature conditions, which suggested that StCBF3 and StCBF4 may be closely related to heat tolerance in potato. Conclusion Overall, members of the CBF/DREB1 protein family exist only in angiosperms and plays an important role in the growth and development of plants. In addition, the CBF/DREB1 protein family is related to the heat and cold resistance of potato. Our research revealed the evolution of the CBF/DREB1 family, and is useful for studying the precise functions of the CBF/DREB1 proteins when the plants are developing and are under temperature stress.

2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


2018 ◽  
Vol 6 (1) ◽  
pp. 421-427
Author(s):  
Liborio Ximenes ◽  
Pratiwi Trisunuwati ◽  
Muharlien

The study was conducted to know blood glucose and triiodothyronine levels of broiler starter due to heat stress and different initial-time feeding. The material used in this study was 64 male DOC broilers of Lohmann strain with the average initial weight of 47.98 ± 2.24 g. The experiment was designed based on randomized block design with a 2x2 factorial and four replications. The treatment combinations as follow: S1W1 = low temperature, feeding 12 hours post-hatching; S1W2 = low temperature, feeding 24 hours post-hatching; S2W1 = high temperature, feeding 12 hours post-hatching; S2W2 = high temperature, feeding 24 hours post-hatching. The Data were Analyzed by using ANOVA. If there was a significant effect (P <0.05) or very significant effect (P <0.01) in Followed by Duncan's test. The result Showed that heat stress treatment significantly affected (P <0.05) to the triiodothyronine level, while initial feeding treatment had no significant effect. Also, blood glucose levels had no significant effect due to the treatments. It concluded that heat stress negatively affected by the blood glucose and triiodothyronine levels of broiler starter. The initial-time feeding has no effect on the blood glucose and triiodothyronine levels. Interactions between treatment and different temperature-time initial feeding have no effect. Nevertheless, the low temperature treatment and initial feeding of 12 hours post-hatching shows the best results with blood glucose 246.25 ± 9.91 mg / dl and triiodothyronine of 2.05 ± 0.14 ng / ml.


2001 ◽  
Vol 127 (3) ◽  
pp. 910-917 ◽  
Author(s):  
Kirsten R. Jaglo ◽  
Susanne Kleff ◽  
Keenan L. Amundsen ◽  
Xin Zhang ◽  
Volker Haake ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5116
Author(s):  
Muhammad Imran ◽  
Muhammad Aaqil Khan ◽  
Raheem Shahzad ◽  
Saqib Bilal ◽  
Murtaza Khan ◽  
...  

Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate–glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.


2021 ◽  
Author(s):  
Peng Zhu ◽  
Jennifer Burney

Abstract. Irrigation has important implications for sustaining global food production, enabling crop water demand to be met even under dry conditions. Added water also cools crop plants through transpiration; irrigation might thus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we use satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Our study shows that, unlike air temperature metrics, satellite-derived LST detects significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling is likely to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. The analysis also suggests that irrigation not only reduces water and temperature stress but also weakens the response of yield to these stresses. Specifically, temperature stress is significantly weakened for reproductive processes in irrigated crops. The attribution analysis further suggests that water and high temperature stress alleviation contributes to 65 % and 35 % of yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, untangling irrigation effects on both heat and water stress mitigation has important implications for designing agricultural adaptation strategies under climate change.


Planta ◽  
2014 ◽  
Vol 239 (6) ◽  
pp. 1243-1263 ◽  
Author(s):  
Daniel H. Zommick ◽  
Lisa O. Knowles ◽  
Mark J. Pavek ◽  
N. Richard Knowles

1971 ◽  
Vol 13 (4) ◽  
pp. 661-667
Author(s):  
A. R. Abou Akkada ◽  
M. A. El Ashray ◽  
O. Shethata ◽  
R. M. Yousri

SUMMARYEight Merino wethers were used in an experiment designed to study the effect of heat stress on ruminal activity and blood urea of sheep newly introduced to Egypt. The sheep were exposed to 15° and 35°Cin aclimatic chamberwith controlled temperature and humidity. The animals were divided into two groups; the first received 100% of the TDN daily requirement and the second was given 125% of the recommended TDN. Rumen and blood samples were obtained from the animals before and at 2, 4, 6, 8 and 10 hr after feeding.VFA concentrations in the rumen were higher in sheep fed on rations of high energy content. The levels of VFA at the low temperature were greater than at the high temperature. Ruminal ammonia and blood urea N concentrations in sheep maintained at the low temperature (15°C) were higher than those of the same animals when kept at the high temperature (35°C). This trend was more obvious at high levels of energy intake. It is suggested that the significant changes in rumen VFA, ammonia N and blood urea N in Merino sheep maintained under hot conditions can be considered as adjustments to changes in nutritional requirements in response to high environmental temperature.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peng Li ◽  
Jia Tian ◽  
Changkui Guo ◽  
Shuping Luo ◽  
Jiang Li

AbstractLow temperature causes anther dysfunction, severe pollen sterility and, ultimately, major yield losses in crop plants. Previous studies have shown that the gibberellic acid (GA) metabolic pathway plays an important role in this process by regulating tapetum function and pollen development. However, the interaction mechanism of GA with other hormones mediating anther development is still unclear. Herein, we collected and analyzed almond (Amygdalus communis L.) anthers at the meiosis, tetrad, 1-nucleus, and mature 2-nucleus stages. The growth rate per 1000 anthers exhibited a significant positive correlation with the total bioactive GA compound content, and the levels of all bioactive GA compounds were highest in the 1-nucleus pollen stage. GA3 treatment experiments indicated that exogenous GA3 increased the levels of indole-3-acetic acid (IAA), trans-zeatin (tZ), and jasmonic acid (JA) and decreased the levels of salicylic acid (SA) and abscisic acid (ABA); moreover, GA3 improved pollen viability and quantities under cold conditions, whereas PP333 (paclobutrazol, an inhibitor of GA biosynthesis) was antagonistic with GA3 in controlling anther development. RNA-seq and qRT-PCR results showed that GA played an important role in anther development by regulating the expression of other phytohormone pathway genes, dehydration-responsive element-binding/C-repeat binding factor (DREB1/CBF)-mediated signaling genes, and anther development pathway genes. Our results reveal the novel finding that GA interacts with other hormones to balance anther development under normal- and low-temperature conditions in almond.


Author(s):  
Qiao Yingying ◽  
Oleksandr Kyselov ◽  
Liu Changzhong

The current study investigated the effect of poultry house temperature change on the growth and development of both broiler chickens themselves and the development of their individual organs. Following 42 days of rearing, results showed that the body oblique length, chest width, chest depth, chest angle, keel length, pelvic width, and tibial length of broilers in the low temperature group were significantly lower than those of the control group (P<0.05), while the breast depth of broiler chickens in the high-temperature group was significantly lower than those in the control group (P<0.05). Furthermore, low temperatures significantly increased the function of the heart, liver, spleen and pancreas of broiler chickens (P<0.05). After 7 days of rearing, the bursal index of broilers in the high temperature group was significantly higher than in the control group as well as in the low temperature group (P<0.05). Previous research has established that high and low temperatures significantly affect the growth and development as well as the immunity of broiler chickens, namely that low environmental temperatures have a more adverse effect on broiler chickens than high temperatures. Consequently, using and maintaining high temperatures early in rearing helps to improve the immunity of broilers and improve their performance. The results of our study provides an opportunity to provide both a theoretical and a practical basis for accurate temperature setting in poultry houses for effective breeding of broiler chickens, which will make it possible to increase the productivity of broiler chickens and increase the economic efficiency of the poultry house. Key words: temperature, breeding, body weight, organ development, broilers chickens.


Sign in / Sign up

Export Citation Format

Share Document