scholarly journals Circular RNA hsa_circ_0000282 contributes to osteosarcoma cell proliferation by regulating miR-192/XIAP axis

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Houkun Li ◽  
Limin He ◽  
Yuan Tuo ◽  
Yansheng Huang ◽  
Bing Qian

Abstract Background Circular RNAs (circRNAs) have emerged as a novel category of non-coding RNA, which exhibit a pivotal effect on regulating gene expression and biological functions, yet how circRNAs function in osteosarcoma (OSA) still demands further investigation. This study aimed at probing into the function of hsa_circ_0000282 in OSA. Methods The expressions of circ_0000282 and miR-192 in OSA tissues and cell lines were examined by quantitative real-time polymerase chain reaction (qRT-PCR), and the correlation between the expression level of circ_0000282 and clinicopathological features of OSA patients was analyzed. The expressions of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in OSA cells were assayed by Western blot. The proliferation and apoptosis of OSA cells were examined by CCK-8, BrdU and flow cytometry, respectively. Bioinformatics analysis, dual-luciferase reporter gene assay and RIP experiments were employed to predict and validate the targeting relationships between circ_0000282 and miR-192, and between miR-192 and XIAP, respectively. Results Circ_0000282 was highly expressed in OSA tissues and cell lines, which represented positive correlation with Enneking stage of OSA patients and negative correlation with tumor differentiation degree. In vitro experiments confirmed that overexpression of circ_0000282 markedly facilitated OSA cell proliferation and repressed cancer cell apoptosis in comparison to control group. Besides, knockdown of circ_0000282 repressed OSA cell proliferation and promoted apoptosis. Additionally, the binding relationships between circ_0000282 and miR-192, and between miR-192 and XIAP were validated. Circ_0000282 indirectly up-regulated XIAP expression by adsorbing miR-192, thereby playing a role in promoting cancer in OSA. Conclusion Circ_0000282 was a novel oncogenic circRNA in OSA. Circ_0000282/miR-192/XIAP axis regulated OSA cell proliferation apoptosis with competitive endogenous RNA mechanism.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


Author(s):  
Fang Liu ◽  
Yan-Li Wang ◽  
Jie-Mei Wei ◽  
Zhao-Dong Huang

Abstract Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie–Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.


2020 ◽  
Vol 98 (2) ◽  
pp. 164-170 ◽  
Author(s):  
Encui Guan ◽  
Xiaoguang Xu ◽  
Fangxi Xue

Gastric cancer (GC) is a major cause of cancer-related deaths worldwide, and has a low survival rate, low cure rate, high recurrence rate, and poor prognosis. Recent studies have indicated that circular RNAs (circRNAs) have important functions in the occurrence and progression of GC. Studies on circ-NOTCH1, which was shown to be highly expressed in GC, have indicated that miR-637 binds to circ-NOTCH1 at multiple sites, and a dual-luciferase reporter gene assay further confirmed that miR-637 indeed targeted circ-NOTCH1 and Apelin. Circ-NOTCH1 and Apelin are highly expressed in GC cells and tissues, whereas the expression of miR-637 is reduced. Circ-NOTCH1 and miR-637 do not regulate each other’s expression levels, but circ-NOTCH1significantly upregulates the expression of the miR-637 target gene Apelin, whereas miR-637 inhibites the expression of Apelin. Examination of GC cells showed that circ-NOTCH1 enhances cell proliferation and invasiveness, and reduces cell apoptosis; these effects were reversed by miR-637, which could terminate the above effects of circ-NOTCH1. When co-transfected with the circ-NOTCH1 overexpression plasmid and Apelin siRNAs, there were no obvious changes to the levels of cell proliferation, apoptosis, or invasiveness. Therefore, in GC cells, circ-NOTCH1 inhibits the transcriptional activity of miR-637, thereby upregulating the expression of its target gene Apelin and regulating cell proliferation, apoptosis, and invasiveness. This finding provides more experimental evidence for the function of circRNA in GC.


2020 ◽  
Author(s):  
Jing Yang ◽  
Judong Luo ◽  
Feng Wang ◽  
Zhiwen Cheng ◽  
Xia Han ◽  
...  

Abstract Background: Pancreatic cancer(PC) is seriously harmful to human health, and the pathogenesis is not clear. The present study aimed to explore the functional role of syncytin-1 in PC.Methods: Syncytin-1 and miR-31 expression was analyzed by qRT-PCR and Western blot analysis in both human PC cell lines and tissuse. The prognostic significance of syncytin-1 was investigated using the immunohistochemistry(IHC) and Kaplan-Meier survival. The CCK-8 assay and transwell assays were used to determine the role of syncytin-1 and miR-31 in cell proliferation, migration and invasion. Luciferase reporter assays was used to identify possible miRNA targets in tumorigenesis.Results: The results showed that the syncytin-1 level was significantly decreased in PC cell lines and tissues than normal(P < 0.05), while miR-31 was markedly higher than normal(P < 0.05), and low expression of syncytin-1 have a poor prognosis than high expression(P < 0.05). Overexpression of syncytin-1 significantly reduced the PC cell proliferation and invasion ability in PANC-1 and BxPC-3 cells(P < 0.05), and miR-31showed contrary results. The Dual-Luciferase reporter gene assay demonstrated that miR-31 binded directly to 3’UTR of syncytin-1 and resulting in the inhibition of syncytin-1. The overexpression of miR-31 promoted migration and proliferation of PC cells through down-regulating the expression of syncytin-1.Conclusion: We verified that syncytin-1 can inhibit proliferation and invasion of PC cell lines by targeting miR-31.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Linsen Feng ◽  
Jianhua Ma ◽  
Haiming Ji ◽  
Yichun Liu ◽  
Weixing Hu

The present study intended to investigate the biological effects of miR-330-5p on glioblastoma (GBM) cell proliferation and invasiveness by targeting integrin α5 (ITGA5). The expressions of miR-330-5p and ITGA5 mRNA in GBM cell lines (U87, U251, and U373) and normal brain glial cell line (HEB) were detected using RT-qPCR. Protein expression of ITGA5 was examined using Western blot. The present study used MTT assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry analysis in order to determine the biological functions of GBM cells (including cell proliferation, invasion, migration, apoptosis, and cell cycle). The present study applied dual-luciferase reporter gene assay to identify the target relationship between miR-330-5p and ITGA5. miR-330-5p was low-expressed in GBM cell lines while ITGA5 was high-expressed compared with HEB. miR-330-5p could directly target ITGA5 as well as suppress its expression in GBM cells. Up-regulation of miR-330-5p and down-regulation of ITGA5 both have an inhibitory effect on cell proliferation, invasion, and migration. Meanwhile, they could also promote GBM cell apoptosis. miR-330-5p could suppress proliferation and invasion of GBM cells through targeting ITGA5.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinxin Kou ◽  
Hui Ding ◽  
Lei Li ◽  
Hongtu Chao

Purpose. Cisplatin is one of the most effective drugs for treating ovarian carcinoma (OC), which is among the most lethal types of carcinoma. However, the chemoresistance to cisplatin that develops over time leads to a poor clinical outcome for many OC patients. Therefore, it is necessary to clearly understand the molecular mechanisms of chemoresistance. In this study, we examined how Hsa-miR-105-1 functions in cisplatin-resistant OC cells. Methods. The levels of Hsa-miR-105-1 expression in cisplatin-sensitive and resistant OC cell lines were detected by qRT-PCR. The target gene of Hsa-miR-105-1 was predicted by using the TargetScan and Starbase databases and verified by the double luciferase reporter gene assay. The target gene of Hsa-miR-105-1 was identified as ANXA9, and ANXA9 expression was evaluated by qRT-PCR, western blotting, and immunofluorescence. To validate the function of Hsa-miR-105-1 in OC cells, we silenced or overexpressed Hsa-miR-105-1 in cisplatin-sensitive or resistant OC cell lines, respectively. Furthermore, the expression levels of several apoptosis-related proteins, including P53, P21, E2F1, Bcl-2, Bax, and caspase-3, were examined by western blot analysis. Results. The levels of Hsa-miR-105-1 expression were abnormally downregulated in cisplatin-resistant OC cells, while ANXA9 expression was significantly upregulated in those cells. Treatment with an Hsa-miR-105-1 inhibitor promoted the expression of ANXA9 mRNA and protein, enhanced the resistance to cisplatin, and attenuated the cell apoptosis induced by cisplatin in cisplatin-sensitive OC cells. Moreover, treatment with Hsa-miR-105-1 mimics inhibited ANXA9 expression, which further increased the levels of P53, P21, and Bax expression and decreased the levels of E2F1 and Bcl-2 expression, finally resulting in an increased sensitivity to cisplatin in cisplatin-resistant OC cells. Conclusion. We found that a downregulation of Hsa-miR-105-1 expression enhanced cisplatin-resistance, while an upregulation of Hsa-miR-105-1 restored the sensitivity of OC cells to cisplatin. The Hsa-miR-105-1/ANXA9 axis plays an important role in the cisplatin-resistance of OC cells.


2021 ◽  
Author(s):  
Yaping Liu ◽  
Xu Zhao ◽  
Yinnan Chen ◽  
Gang Guo ◽  
Jiansheng Wang ◽  
...  

Abstract To evaluate the expression of PITPNA-AS1 and miR-98-5p in gastric cancer tissues as well as their association with progression of gastric cancer, and investigate the role of PITPNA-AS1 and miR-98-5p in developing platinum resistance. RNA sequencing was used to identify candidate lncRNAs and microRNAs related to local recurrence of gastric cancer. qRT-PCR was used to investigate the expression of PITPNA-AS1 and miR-98-5p. CCK-8 and caspase3/7 activity were used to evaluate the cell proliferation and apoptosis rate. Dual luciferase reporter gene assay and RNA pull down were used to evaluate the cross talk between PITPNA-AS1 and miR-98-5p. PITPNA-AS1 and miR-98-5p could regulate cell proliferation and inhibit apoptosis in gastric cancer cell lines. Cisplatin and lobaplatin could significantly suppress the expression of PITPNA-AS1, which interacted with negatively regulated miR-98-5p expression. PITPNA-AS1 overexpression impaired the effect of platinum, which was partially reversed by downregulation of miR-98-5p knock down. In gastric cancer, PITPNA-AS1 and miR-98-5p could regulat cell growth, apoptosis and platinum resistance. They have the potential to be biomarkers and curative therapeutic targets. However, further research on molecular mechanisms are needed.


Sign in / Sign up

Export Citation Format

Share Document