scholarly journals Metabolic reprogramming and metabolic sensors in KSHV-induced cancers and KSHV infection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Shou-Jiang Gao

AbstractKaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus associated with several human cancers. KSHV infection and KSHV-induced anabolic cell proliferation and cellular transformation depend on reprogramming of cellular metabolic pathways, which provide the building blocks and energy for the growth of both the virus and the infected cells. Furthermore, KSHV dysregulates numerous metabolic sensors including mTOR, AMPK, CASTOR1 and sirtuins to maintain cellular energetic homeostasis during infection and in KSHV-induced cancers. In this review, we summarize the recent advances in the understanding of KSHV hijacking of metabolic pathways and sensors, providing insights into the molecular basis of KSHV infection and KSHV-induced oncogenesis. In addition, we highlight the critical metabolic targets and sensors for developing potential new therapies against KSHV infection and KSHV-induced cancers.

2020 ◽  
Author(s):  
Rajnish Kumar Singh ◽  
Yonggang Pei ◽  
Zachary L Lamplugh ◽  
Kunfeng Sun ◽  
Yan Yuan ◽  
...  

AbstractThe cellular adaptive response to hypoxia, mediated by high HIF1α levels includes metabolic reprogramming, restricted DNA replication and cell division. In contrast to healthy cells, the genome of cancer cells, and Kaposi’s sarcoma associated herpesvirus (KSHV) infected cells maintains replication in hypoxia. We show that KSHV infection, despite promoting expression of HIF1α in normoxia, can also restricts transcriptional activity, and promoted its degradation in hypoxia. KSHV-encoded vCyclin, expressed in hypoxia, mediated HIF1a cytosolic translocation, and its degradation through a non-canonical lysosomal pathway. Attenuation of HIF1α levels by vCyclin allowed cells to bypass the block to DNA replication and cell proliferation in the hypoxia. These results demonstrated that KSHV utilizes a unique strategy to balance HIF1α levels to overcome replication arrest and induction of the oncogenic phenotype, which are dependent on the levels of oxygen in the microenvironment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rajnish Kumar singh ◽  
Yonggang Pei ◽  
Dipayan Bose ◽  
Zachary L Lamplugh ◽  
Kunfeng Sun ◽  
...  

The cellular adaptive response to hypoxia, mediated by high HIF1α levels includes metabolic reprogramming, restricted DNA replication and cell division. In contrast to healthy cells, the genome of cancer cells, and Kaposi's sarcoma associated herpesvirus (KSHV) infected cells maintains replication in hypoxia. We show that KSHV infection, despite promoting expression of HIF1α in normoxia, can also restrict transcriptional activity, and promoted its degradation in hypoxia. KSHV-encoded vCyclin, expressed in hypoxia, mediated HIF1a cytosolic translocation, and its degradation through a non-canonical lysosomal pathway. Attenuation of HIF1α levels by vCyclin allowed cells to bypass the block to DNA replication and cell proliferation in hypoxia. These results demonstrated that KSHV utilizes a unique strategy to balance HIF1α levels to overcome replication arrest and induction of the oncogenic phenotype, which are dependent on the levels of oxygen in the microenvironment.


2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Mohanan Valiya Veettil ◽  
Gayathri Krishna ◽  
Arunava Roy ◽  
Anandita Ghosh ◽  
Dipanjan Dutta ◽  
...  

ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi’s sarcoma (KS) in immunocompromised individuals. KS lesion cells exhibit many similarities to neuroendocrine (NE) cancers, such as highly vascular and red/purple tumor lesions, spindle-shaped cells, an insignificant role for classic oncogenes in tumor development, the release of bioactive amines, and indolent growth of the tumors. However, the mechanistic basis for the similarity of KS lesion endothelial cells to neuroendocrine tumors remains unknown. Next-generation sequencing and bioinformatics analysis in the present study demonstrate that endothelial cells latently infected with KSHV express several neuronal and NE genes. De novo infection of primary dermal endothelial cells with live and UV-inactivated KSHV demonstrated that viral gene expression is responsible for the upregulation of five selected NE genes (adrenomedullin 2 [ADM2], histamine receptor H1 [HRH1], neuron-specific enolase [NSE] [ENO2], neuronal protein gene product 9.5 [PGP9.5], and somatostatin receptor 1 [SSTR1]). Immunofluorescence and immunohistochemistry examinations demonstrated the robust expression of the NE genes HRH1 and NSE/ENO2 in KSHV-infected KS tissue samples and KS visceral tissue microarrays. Further analysis demonstrated that KSHV latent open reading frame K12 (ORFK12) gene (kaposin A)-mediated decreased host REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) protein, a neuronal gene transcription repressor protein, is responsible for NE gene expression in infected endothelial cells. The NE gene expression observed in KSHV-infected cells was recapitulated in uninfected endothelial cells by the exogenous expression of ORFK12 and by the treatment of cells with the REST inhibitor X5050. When the neuroactive ligand-activating receptor HRH1 and inhibitory SSTR1 were knocked out by CRISPR, HRH1 knockout (KO) significantly inhibited cell proliferation, while SSTR1 KO induced cell proliferation, thus suggesting that HRH1 and SSTR1 probably counteract each other in regulating KSHV-infected endothelial cell proliferation. These results demonstrate that the similarity of KS lesion cells to neuroendocrine tumors is probably a result of KSHV infection-induced transformation of nonneuronal endothelial cells into cells with neuroendocrine features. These studies suggest a potential role of neuroendocrine pathway genes in the pathobiological characteristics of KSHV-infected endothelial cells, including a potential mechanism of escape from the host immune system by the expression of immunologically privileged neuronal-site NE genes, and NE genes could potentially serve as markers for KSHV-infected KS lesion endothelial cells as well as novel therapeutic targets to control KS lesions. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) manipulates several cellular pathways for its survival advantage during its latency in the infected human host. Here, we demonstrate that KSHV infection upregulates the expression of genes related to neuronal and neuroendocrine (NE) functions that are characteristic of NE tumors, both in vitro and in KS patient tissues and the heterogeneity of neuroendocrine receptors having opposing roles in KSHV-infected cell proliferation. Induction of NE genes by KSHV could also provide a potential survival advantage, as the expression of proteins at immunologically privileged sites such as neurons on endothelial cells may be an avenue to escape host immune surveillance functions. The NE gene products identified here could serve as markers for KSHV-infected cells and could potentially serve as therapeutic targets to combat KSHV-associated KS.


Author(s):  
Helen Carrasco Hope ◽  
Robert J. Salmond

AbstractT cell activation, differentiation and proliferation is dependent upon and intrinsically linked to a capacity to modulate and adapt cellular metabolism. Antigen-induced activation stimulates a transcriptional programme that results in metabolic reprogramming, enabling T cells to fuel anabolic metabolic pathways and provide the nutrients to sustain proliferation and effector responses. Amino acids are key nutrients for T cells and have essential roles as building blocks for protein synthesis as well as in numerous metabolic pathways. In this review, we discuss the roles for uptake and biosynthesis of non-essential amino acids in T cell metabolism, activation and effector function. Furthermore, we highlight the effects of amino acid metabolism and depletion by cancer cells on T cell anti-tumour function and discuss approaches to modulate and improve T cell metabolism for improved anti-tumour function in these nutrient-depleted microenvironments.


2019 ◽  
Vol 116 (52) ◽  
pp. 26625-26632 ◽  
Author(s):  
Kai Su Greene ◽  
Michael J. Lukey ◽  
Xueying Wang ◽  
Bryant Blank ◽  
Joseph E. Druso ◽  
...  

The mitochondrial enzyme glutaminase (GLS) is frequently up-regulated during tumorigenesis and is being evaluated as a target for cancer therapy. GLS catalyzes the hydrolysis of glutamine to glutamate, which then supplies diverse metabolic pathways with carbon and/or nitrogen. Here, we report that SIRT5, a mitochondrial NAD+-dependent lysine deacylase, plays a key role in stabilizing GLS. In transformed cells, SIRT5 regulates glutamine metabolism by desuccinylating GLS and thereby protecting it from ubiquitin-mediated degradation. Moreover, we show that SIRT5 is up-regulated during cellular transformation and supports proliferation and tumorigenesis. Elevated SIRT5 expression in human breast tumors correlates with poor patient prognosis. These findings reveal a mechanism for increasing GLS expression in cancer cells and establish a role for SIRT5 in metabolic reprogramming and mammary tumorigenesis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yuying Qi ◽  
Chaoying Song ◽  
Jiali Zhang ◽  
Chong Guo ◽  
Chengfu Yuan

Background: Long non-coding RNA (LncRNAs), with the length over 200 nucleotides, originate from intergenic, antisense, or promoter-proximal regions, is a large family of RNAs that lack coding capacity. Emerging evidences illustrated that LncRNAs played significant roles in a variety of cellular functions and biological processes in profuse human diseases, especially in cancers. Cancer susceptibility candidate 9 (CASC9), as a member of the LncRNAs group, was firstly found its oncogenic function in esophageal cancer. In following recent studies, a growing amount of human malignancies are verified to be correlated with CASC9, most of which are derived from the squamous epithelium tissue. This present review attempts to highlight the latest insights into the expression, functional roles, and molecular mechanisms of CASC9 in different human malignancies. Methods: In this review, the latest findings related to the pathophysiological processes of CASC9 in human cancers were summarized and analyzed, the associated studies were collected in systematically retrieval of PubMed used lncRNA and CASA9 as keywords. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Conclusion: Long non-coding RNACASC9 likely served as useful disease biomarkers or therapy targets that could effectively apply in treatment of different kinds of cancers.


2019 ◽  
Vol 15 (36) ◽  
pp. 4127-4139 ◽  
Author(s):  
Yingli Yuan ◽  
Luguo Sun ◽  
Xu Wang ◽  
Jingxian Chen ◽  
Mingnan Jia ◽  
...  

Aim: To clarify the regulatory roles of GLDCV1, the first identified truncated glycine decarboxylase (GLDC), on cancer stem cells and tumorigenesis. Materials & methods: RT-PCR or RT-qPCR, immunoblotting and immunohistochemical staining were applied to assess gene expression. MTT, BrdU incorporation and colony formation assays were used to examine cell proliferation capacity. Soft agar colony formation and in vivo transplantation were applied to evaluate cellular transformation and tumorigenesis. Results & conclusion: Expression of GLDCV1 or GLDC was enhanced in non-small-cell lung cancer cell line and clinical samples. GLDCV1 overexpression induced MRC5 cell proliferation, transformation and tumorigenesis. Additionally, GLDCV1 increased lactate production and cancer stem cell marker expression and activated ERK and P38 pathways. Our study gained deeper insight into GLDC oncogene.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 913
Author(s):  
Ting Li ◽  
Yan Wei ◽  
Meihua Qu ◽  
Lixian Mou ◽  
Junye Miao ◽  
...  

Formaldehyde (FA) is a highly reactive substance that is ubiquitous in the environment and is usually considered as a pollutant. In the human body, FA is a product of various metabolic pathways and participates in one-carbon cycle, which provides carbon for the synthesis and modification of bio-compounds, such as DNA, RNA, and amino acids. Endogenous FA plays a role in epigenetic regulation, especially in the methylation and demethylation of DNA, histones, and RNA. Recently, epigenetic alterations associated with FA dysmetabolism have been considered as one of the important features in age-related cognitive impairment (ARCI), suggesting the potential of using FA as a diagnostic biomarker of ARCI. Notably, FA plays multifaceted roles, and, at certain concentrations, it promotes cell proliferation, enhances memory formation, and elongates life span, effects that could also be involved in the aetiology of ARCI. Further investigation of and the regulation of the epigenetics landscape may provide new insights about the aetiology of ARCI and provide novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document