scholarly journals A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicoletta Prax ◽  
Stefanie Wagner ◽  
Jakob Schardt ◽  
Klaus Neuhaus ◽  
Thomas Clavel ◽  
...  

Abstract Background Little is known about the complex interactions between the diet, the gut microbiota, and enteropathogens. Here, the impact of two specific diets on the composition of the mouse gut microbiota and on the transcriptional response of Salmonella Typhimurium (S. Typhimurium) was analyzed in an enteritis model. Results Mice were fed for two weeks a fibre-rich, plant-based diet (PD), or a Westernized diet (WD) rich in animal fat and proteins and in simple sugars, and then infected with an invasin-negative S. Typhimurium strain ST4/74 following streptomycin-treatment. Seventy-two hours post infection, fecal pathogen loads were equal in both diet groups, suggesting that neither of the diets had negatively influenced the ability of this ST4/74 strain to colonize and proliferate in the gut at this time point. To define its diet-dependent gene expression pattern, S. Typhimurium was immunomagnetically isolated from the gut content, and its transcriptome was analyzed. A total of 66 genes were more strongly expressed in mice fed the plant-based diet. The majority of these genes was involved in metabolic functions degrading substrates of fruits and plants. Four of them are part of the gat gene cluster responsible for the uptake and metabolism of galactitol and D-tagatose. In line with this finding, 16S rRNA gene amplicon analysis revealed higher relative abundance of bacterial families able to degrade fiber and nutritive carbohydrates in PD-fed mice in comparison with those nourished with a WD. Competitive mice infection experiments performed with strain ST4/74 and ST4/74 ΔSTM3254 lacking tagatose-1,6-biphosphate aldolase, which is essential for galactitol and tagatose utilization, did not reveal a growth advantage of strain ST4/74 in the gastrointestinal tract of mice fed plant-based diet as compared to the deletion mutant. Conclusion A Westernized diet and a plant-based diet evoke distinct transcriptional responses of S. Typhimurium during infection that allows the pathogen to adapt its metabolic activities to the diet-derived nutrients. This study therefore provides new insights into the dynamic interplay between nutrient availability, indigenous gut microbiota, and proliferation of S. Typhimurium.

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Vineet Singh ◽  
Karthika Muthuramalingam ◽  
Young Mee Kim ◽  
Sanggyu Park ◽  
Sung Hong Kim ◽  
...  

AbstractSynbiotics synergistically favors beneficial effects of prebiotics and probiotics towards host metabolic health by modulating gut ecosystem. In this study, we sought to examine the effects of prebiotics (Schizophyllum commune derived β-(1,3/1,6)-glucan), probiotics (concoction made of eight different bacterial strains) and synbiotics (prebiotics + probiotics) on gut microbiota and its associated metabolic functions through 16S rRNA gene sequences analysis. Results showed that probiotics strains used in this study were detected more in the synbiotic and probiotic treatments, while prebiotic dietary intervention increased the total bacterial abundance and metabolisms related to host immune strengthening. Probiotics and synbiotics dietary interventions enhanced similar metabolisms relating to butanediol and s-adenosyl-l-methionine biosynthesis. Probiotics treatment also showed depleted metabolic activities related to SCFA productions, that were not depleted in prebiotics treatment. With varying differential abundance patterns and metabolic activities across the treatments, our results suggest that synbiotic treatment provide more beneficial effects over probiotics and prebiotics.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2330
Author(s):  
Carmen van der Linde ◽  
Monica Barone ◽  
Silvia Turroni ◽  
Patrizia Brigidi ◽  
Enver Keleszade ◽  
...  

The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P &lt; 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P &lt; 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P &lt; .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2018 ◽  
Vol 38 (10) ◽  
Author(s):  
Susana Beceiro ◽  
Attila Pap ◽  
Zsolt Czimmerer ◽  
Tamer Sallam ◽  
Jose A. Guillén ◽  
...  

ABSTRACTThe liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migrationin vitroandin vivo. Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR−/−) LDLR−/−mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.


2020 ◽  
Vol 69 (6) ◽  
pp. 854-863
Author(s):  
Catherine O'Reilly ◽  
Órla O’Sullivan ◽  
Paul D. Cotter ◽  
Paula M. O’Connor ◽  
Fergus Shanahan ◽  
...  

Introduction. Management of steroid-refractory ulcerative colitis has predominantly involved treatment with systemic cyclosporine A (CyA) and infliximab. Aim. The purpose of this study was to assess the effect of using a colon-targeted delivery system CyA formulation on the composition and functionality of the gut microbiota. Methodology. Ex vivo faecal fermentations from six healthy control subjects were treated with coated minispheres (SmPill) with (+) or without (−) CyA and compared with a non-treated control in a model colon system. In addition, the in vivo effect of the SmPill+CyA formulation was investigated by analysing the gut microbiota in faecal samples collected before the administration of SmPill+CyA and after 7 consecutive days of administration from eight healthy subjects who participated in a pilot study. Results. Analysis of faecal samples by 16S rRNA gene sequencing indicated little variation in the diversity or relative abundance of the microbiota composition before or after treatment with SmPill minispheres with or without CyA ex vivo or with CyA in vivo. Short-chain fatty acid profiles were evaluated using gas chromatography, showing an increase in the concentration of n-butyrate (P=0.02) and acetate (P=0.32) in the faecal fermented samples incubated in the presence of SmPill minispheres with or without CyA. This indicated that increased acetate and butyrate production was attributed to a component of the coated minispheres rather than an effect of CyA on the microbiota. Butyrate and acetate levels also increased significantly (P=0.05 for both) in the faecal samples of healthy individuals following 7 days’ treatment with SmPill+CyA in the pilot study. Conclusion. SmPill minispheres with or without CyA at the clinically relevant doses tested here have negligible direct effects on the gut microbiota composition. Butyrate and acetate production increased, however, in the presence of the beads in an ex vivo model system as well as in vivo in healthy subjects. Importantly, this study also demonstrates the relevance and value of using ex vivo colon models to predict the in vivo impact of colon-targeted drugs directly on the gut microbiota.


2021 ◽  
Author(s):  
Nikki D. Russell ◽  
Clement Y. Chow

AbstractGenotype x Environment (GxE) interactions occur when environmental conditions drastically change the effect of a genetic variant. In order to truly understand the effect of genetic variation, we need to incorporate multiple environments into our analyses. Many variants, under steady state conditions, may be silent or even have the opposite effect under stress conditions. This study uses an in vivo mouse model to investigate how the effect of genetic variation changes with tissue type and cellular stress. Endoplasmic reticulum (ER) stress occurs when misfolded proteins accumulate in the ER. This triggers the unfolded protein response (UPR), a large transcriptional response which attempts to return the cell to homeostasis. This transcriptional response, despite being a well conserved, basic cellular process, is highly variable across different genetic backgrounds, making it an ideal system to study GxE effects. In this study, we sought to better understand how genetic variation alters expression across tissues, in the presence and absence of ER stress. The use of different mouse strains and their F1s allow us to also identify context specific cis- and trans-regulatory mechanisms underlying variable transcriptional responses. We found hundreds of genes that respond to ER stress in a tissue- and/or genotype-dependent manner. Genotype-dependent ER stress-responsive genes are enriched for processes such as protein folding, apoptosis, and protein transport, indicating that some of the variability occurs in canonical ER stress factors. The majority of regulatory mechanisms underlying these variable transcriptional responses derive from cis-regulatory variation and are unique to a given tissue or ER stress state. This study demonstrates the need for incorporating multiple environments in future studies to better elucidate the effect of any particular genetic factor in basic biological pathways, like the ER stress response.Author SummaryThe effect of genetic variation is dependent on environmental context. Here we use genetically diverse mouse strains to understand how genetic variation interacts with stress state to produce variable transcriptional profiles. In this study, we take advantage of the endoplasmic reticulum (ER) stress response which is a large transcriptional response to misfolded proteins. Using this system, we uncovered tissue- and ER stress-specific effects of genetic variation on gene expression. Genes with genotype-dependent variable expression levels in response to ER stress were enriched for canonical ER stress functions, such as protein folding and transport. These variable effects of genetic variation are driven by unique sets of regulatory variation that are only active under context-specific circumstances. The results of this study highlight the importance of including multiple environments and genetic backgrounds when studying the ER stress response and other cellular pathways.


2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer-carrying strain Lactobacillus brevis SF9B and a plantaricin-producing strain Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antibacterial activity of Lb. plantarum SF9C and potential for their in vivo colonisation, which could be the basis for the investigation of their synergistic functionality. Results: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from adhesion to Caco-2 cells. Finally, DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonisation potential in GIT.Conclusion: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B could influence the intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also through altered abundances of other bacterial genera, either in the model of healthy or aberrant microbiota of rats. The obtained results contributed to the functional aspects of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods and therefore have a beneficial influence on the gut microbiota composition.


2019 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Mohd Baasir Gaisawat ◽  
Chad W. MacPherson ◽  
Julien Tremblay ◽  
Amanda Piano ◽  
Michèle M. Iskandar ◽  
...  

Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota. In the present study, we assessed the ability of several single strain probiotics and a probiotic mixture to change the metabolic functions of normal and C. difficile-infected fecal samples. The production of short-chain fatty acids (SCFAs), hydrogen sulfide (H2S), and ammonia was measured, and changes in microbial composition were assessed by 16S rRNA gene amplicon sequencing. The C. difficile-infection in fecal samples resulted in a significant decrease (p < 0.05) in SCFA and H2S production, with a lower microbial alpha diversity. All probiotic treatments were associated with significantly increased (p < 0.05) levels of SCFAs and restored H2S levels. Probiotics showed no effect on microbial composition of either normal or C. difficile-infected fecal samples. These findings indicate that probiotics may be useful to improve the metabolic dysregulation associated with C. difficile infection.


Sign in / Sign up

Export Citation Format

Share Document