Reinforced Concrete Wide-Beam Construction vs. Conventional Construction: Resistance to Lateral Earthquake Loads

2001 ◽  
Vol 17 (3) ◽  
pp. 479-505 ◽  
Author(s):  
James M. LaFave ◽  
James K. Wight

Experiments and analyses were conducted to address concerns about performance of reinforced concrete connections with shallow, wide beams subjected to lateral earthquake loading and to compare behavior of wide beam connections to that of conventional connections. Two wide beam-column-slab connections and one conventional beam-column-slab connection were subjected to cycles of reversing lateral displacements up to 5% drift. The conventional beam and wide beam connections exhibited similar overall load-displacement behavior, with similar beam plastic hinge development. The wide beam connections dissipated almost as much energy as the conventional beam connection and had greater slab participation and less joint and beam shear cracking than the conventional beam connection. Experimentally determined wide beam connection stiffness was closer to the conventional beam connection stiffness than had been predicted. Refined models were developed, with features such as rigid end offsets for wide beam connections, to better represent observed behavior. Nonlinear models were also developed that accurately captured differences in energy dissipation as well as stiffness.

2021 ◽  
Vol 14 (1) ◽  
pp. 115-129
Author(s):  
Mustafa Joad ◽  
Ali L. Abass

This paper presented an experimental study of the behaviour of wide reinforced concrete beams with different shear spacing and beam width. Eight specimens in two groups, the group one contains four specimens with the dimensions of (200x500x1600mm) and shear reinforcement spacing (d/2, 0.65d, 3/4d and 1.0d), the group two contains four specimens with the dimensions of (200x600x1600mm) and shear reinforcement spacing (d/2, 0.55d, 3/4d and 1.0d), Variables studied in this study shear reinforcement spacing and width of wide beam, the increasing of shear reinforcement spacing gives close results in RC wide beam, increased shear reinforcement spacing decreased the ultimate loud by 6.6% and when increasing width of beam the ultimate loud decreased by 9.5%, The ultimate deflection decreased by 16.5% and when increasing width of beam decreased by 7.2 %,The number of flexural cracks was equal in all beams, when increasing width of beam the number of flexural crack increased by 2 cracks, The average spacing between shear cracks decreased by 7%, when increasing width of beam average spacing between shear cracks decreased by 19%.


Author(s):  
J. B. Mander ◽  
M. J. N. Priestley ◽  
R. Park

An experimental investigation into the seismic performance of ductile hollow reinforced concrete bridge piers is described. Four 3.2 m high specimens, 750 mm square with 120 mm thick walls containing 60 longitudinal steel bars and different arrangements of confining steel in the plastic hinge zone were subjected to a constant axial load and cyclic lateral displacements. An assessment of the effect of axial load and the amount of transverse steel on the rotational capacity of the plastic hinge is made. The specimens performed satisfactorily at member ductilities between 6 and 8 without 
any significant degradation of strength under cyclic loading.


1999 ◽  
Vol 26 (6) ◽  
pp. 810-817 ◽  
Author(s):  
Akin A Olonisakin ◽  
Scott DB Alexander

This paper presents an analysis of the results of five tests conducted on four reinforced concrete beams. The tests were performed principally to investigate the mechanics of internal shear transfer in a transversely loaded concrete beam with no shear reinforcement. Test specimens consisted of simply supported wide beams with steel flexural reinforcement. The reinforcement for two of the beams was epoxy coated. The shear span to depth ratios were 2.93, 3.32, and 3.81. Measured strains on the reinforcement were used to divide the total shear into its beam and arching action components. In all tests, beam and arching action shear transfer mechanisms were found to coexist. Apart from that with the longest span, all tests ended with rupture of the concrete along a diagonal failure surface. It is concluded that shear failure may be caused by a shift in the internal mechanics of shear transfer from beam action to arching action. Because this shift may be initiated by the yielding of reinforcement, it can be associated with the formation of a plastic hinge. There was no observed effect on the mechanics of shear transfer that could be attributed to epoxy coating of the reinforcement.Key words: arching action, beam action, one-way shear, shear transfer, reinforced concrete beam, bond forces, bar force gradient.


2018 ◽  
Vol 45 (11) ◽  
pp. 947-957 ◽  
Author(s):  
Sara Mirzabagheri ◽  
Abbas Ali Tasnimi ◽  
Fadwa Issa

Past researches showed that the energy dissipation capacity of the wide beam-column joints was not sufficient. So, two full-scale reinforced concrete interior wide beam-column joints were tested under quasi-static cyclic loads and the performance of the specimens was studied experimentally and numerically. Effect of using wide beams in two directions was investigated and it became clear that the longitudinal reinforcement of transverse wide beam had significant effect on the seismic behavior of the joints. Flexural hinging mechanism in the wide beams occurred instead of torsion brittle mode of failure. Effect of eccentric beams on joints is one of the areas needing research in ACI 352R-02. In the numerical study, it was seen that damage of the joints was concentrated to one side of the joints that the beams shifted to. Besides, concrete grade did not have much effect on behavior of the joint.


Author(s):  
J.M. Ingham ◽  
D. Liddell ◽  
B.J. Davidson

An investigation considering the influence of loading histories on the performance of a reinforced concrete beam plastic hinge is described. Twelve loading histories were considered, including conventional procedures employed in the United States, Japan and New Zealand, and artificially generated histories derived from recorded earthquake ground motions. Details of the prototype structure and the test beam are described, followed by comprehensive reporting o f experimental data. Performance descriptors and further treatment of the experimental data are presented in a companion paper.


Author(s):  
Xiaowei Cheng ◽  
Haoyou Zhang

AbstractUnder strong earthquakes, reinforced concrete (RC) walls in high-rise buildings, particularly in wall piers that form part of a coupled or core wall system, may experience coupled axial tension–flexure loading. In this study, a detailed finite element model was developed in VecTor2 to provide an effective tool for the further investigation of the seismic behaviour of RC walls subjected to axial tension and cyclic lateral loading. The model was verified using experimental data from recent RC wall tests under axial tension and cyclic lateral loading, and results showed that the model can accurately capture the overall response of RC walls. Additional analyses were conducted using the developed model to investigate the effect of key design parameters on the peak strength, ultimate deformation capacity and plastic hinge length of RC walls under axial tension and cyclic lateral loading. On the basis of the analysis results, useful information were provided when designing or assessing the seismic behaviour of RC slender walls under coupled axial tension–flexure loading.


2021 ◽  
Vol 6 (7) ◽  
pp. 97
Author(s):  
Stefanus Adi Kristiawan ◽  
Halwan Alfisa Saifullah ◽  
Agus Supriyadi

Deteriorated concrete cover, e.g., spalling or delamination, especially when it occurs at the web of a reinforced concrete (RC) beam within the shear span, can reduce the shear capacity of the beam. Patching of this deteriorated area may be the best option to recover the shear capacity of the beam affected. For this purpose, unsaturated polyester resin mortar (UPR mortar) has been formulated. This research aims to investigate the efficacy of UPR mortar in limiting the shear cracking and so restoring the shear capacity of the deteriorated RC beam. The investigation is carried out by an experimental and numerical study. Two types of beams with a size of 150 × 250 × 1000 mm were prepared. The first type of beams was assigned as a normal beam. The other was a beam with a cut off in the non-stirrup shear span, which was eventually patched with UPR mortar. Two reinforcement ratios were assigned for each type of beams. The results show that UPR mortar is effective to hamper the propagation of diagonal cracks leading to increase the shear failure load by 15–20% compared to the reference (normal) beam. The increase of shear strength with the use of UPR mortar is consistently confirmed at various reinforcement ratios.


Sign in / Sign up

Export Citation Format

Share Document