The role of heredity in cancer.

1989 ◽  
Vol 7 (4) ◽  
pp. 527-540 ◽  
Author(s):  
E G Levine ◽  
R A King ◽  
C D Bloomfield

Heredity is generally felt to play a minor role in the development of cancer. This review critically examines this assumption. Topics discussed include evidence for heritable predisposition in animals and humans; the potential importance of genetic-environmental interactions; approaches that are being used to successfully locate genes responsible for heritable predisposition; comparability of genetic findings among heritable and corresponding sporadic malignancies; and future research directions. Breast, colon, and lung cancer are used to exemplify clinical and research activity in familial cancer; clinical phenotypes, segregation and linkage analyses, models for environmental interactions with inherited traits, and molecular mechanisms of tumor development are discussed. We conclude that the contribution of heredity to the cancer burden is greater than generally accepted, and that study of heritable predisposition will continue to reveal carcinogenic mechanisms important to the development of all cancers.

2021 ◽  
Vol 12 ◽  
Author(s):  
Weiping Xia ◽  
Yao He ◽  
Yu Gan ◽  
Bo Zhang ◽  
Guoyu Dai ◽  
...  

Renal fibrosis (RF) is a pathological process that culminates in terminal renal failure in chronic kidney disease (CKD). Fibrosis contributes to progressive and irreversible decline in renal function. However, the molecular mechanisms involved in RF are complex and remain poorly understood. Long non-coding RNAs (lncRNAs) are a major type of non-coding RNAs, which significantly affect various disease processes, cellular homeostasis, and development through multiple mechanisms. Recent investigations have implicated aberrantly expressed lncRNA in RF development and progression, suggesting that lncRNAs play a crucial role in determining the clinical manifestation of RF. In this review, we comprehensively evaluated the recently published articles on lncRNAs in RF, discussed the potential application of lncRNAs as diagnostic and/or prognostic biomarkers, proposed therapeutic targets for treating RF-associated diseases and subsequent CKD transition, and highlight future research directions in the context of the role of lncRNAs in the development and treatment of RF.


2008 ◽  
Vol 363 (1506) ◽  
pp. 3023-3036 ◽  
Author(s):  
Christian Lexer ◽  
Alex Widmer

The genic view of the process of speciation is based on the notion that species isolation may be achieved by a modest number of genes. Although great strides have been made to characterize ‘speciation genes’ in some groups of animals, little is known about the nature of genic barriers to gene flow in plants. We review recent progress in the characterization of genic species barriers in plants with a focus on five ‘model’ genera: Mimulus (monkey flowers); Iris (irises); Helianthus (sunflowers); Silene (campions); and Populus (poplars, aspens, cottonwoods). The study species in all five genera are diploid in terms of meiotic behaviour, and chromosomal rearrangements are assumed to play a minor role in species isolation, with the exception of Helianthus for which data on the relative roles of chromosomal and genic isolation factors are available. Our review identifies the following key topics as being of special interest for future research: the role of intraspecific variation in speciation; the detection of balancing versus directional selection in speciation genetic studies; the timing of fixation of alleles of major versus minor effects during plant speciation; the likelihood of adaptive trait introgression; and the identification and characterization of speciation genes and speciation gene networks.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


2019 ◽  
Vol 12 (4) ◽  
pp. 311-323 ◽  
Author(s):  
Salvatore Benvenga ◽  
Antonio Micali ◽  
Giovanni Pallio ◽  
Roberto Vita ◽  
Consuelo Malta ◽  
...  

Background: Cadmium (Cd) impairs gametogenesis and damages the blood-testis barrier. Objective: As the primary mechanism of Cd-induced damage is oxidative stress, the effects of two natural antioxidants, myo-inositol (MI) and seleno-L-methionine (Se), were evaluated in mice testes. Methods: Eighty-four male C57 BL/6J mice were divided into twelve groups: 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); Se (0.2 mg/kg/day per os); Se (0.4 mg/kg/day per os); MI (360 mg/kg/day per os); MI plus Se (0.2 mg/kg/day); MI plus Se (0.4 mg/kg/day); CdCl2 (2 mg/kg/day i.p.) plus vehicle; CdCl2 plus MI; CdCl2 plus Se (0.2 mg/kg/day); CdCl2 plus Se (0.4 mg/kg/day); CdCl2 plus MI plus Se (0.2 mg/kg/day); and CdCl2 plus MI plus Se (0.4 mg/kg/day). After 14 days, testes were processed for biochemical, structural and immunohistochemical analyses. Results: CdCl2 increased iNOS and TNF-α expression and Malondialdehyde (MDA) levels, lowered glutathione (GSH) and testosterone, induced testicular lesions, and almost eliminated claudin-11 immunoreactivity. Se administration at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression, maintained GSH, MDA and testosterone levels, structural changes and low claudin-11 immunoreactivity. MI alone or associated with Se at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression and MDA levels, increased GSH and testosterone levels, ameliorated structural organization and increased claudin-11 patches number. Conclusion: We demonstrated a protective effect of MI, a minor role of Se and an evident positive role of the association between MI and Se on Cd-induced damages of the testis. MI alone or associated with Se might protect testes in subjects exposed to toxicants, at least to those with behavior similar to Cd.


Author(s):  
Marian Tanofsky-Kraff ◽  
Denise E. Wilfley

Interpersonal psychotherapy (IPT) is a focused, time-limited treatment that targets interpersonal problem(s) associated with the onset and/or maintenance of EDs. IPT is supported by substantial empirical evidence documenting the role of interpersonal factors in the onset and maintenance of EDs. IPT is a viable alternative to cognitive behavior therapy for the treatment of bulimia nervosa and binge eating disorder. The effectiveness of IPT for the treatment of anorexia nervosa requires further investigation. The utility of IPT for the prevention of obesity is currently being explored. Future research directions include enhancing the delivery of IPT for EDs, increasing the availability of IPT in routine clinical care settings, exploring IPT adolescent and parent–child adaptations, and developing IPT for the prevention of eating and weight-related problems that may promote full-syndrome EDs or obesity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4646
Author(s):  
Alexey A. Tinkov ◽  
Monica M. B. Paoliello ◽  
Aksana N. Mazilina ◽  
Anatoly V. Skalny ◽  
Airton C. Martins ◽  
...  

Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 317
Author(s):  
Simone Mesman ◽  
Iris Wever ◽  
Marten P. Smidt

During development, mesodiencephalic dopaminergic (mdDA) neurons form into different molecular subsets. Knowledge of which factors contribute to the specification of these subsets is currently insufficient. In this study, we examined the role of Tcf4, a member of the E-box protein family, in mdDA neuronal development and subset specification. We show that Tcf4 is expressed throughout development, but is no longer detected in adult midbrain. Deletion of Tcf4 results in an initial increase in TH-expressing neurons at E11.5, but this normalizes at later embryonic stages. However, the caudal subset marker Nxph3 and rostral subset marker Ahd2 are affected at E14.5, indicating that Tcf4 is involved in correct differentiation of mdDA neuronal subsets. At P0, expression of these markers partially recovers, whereas expression of Th transcript and TH protein appears to be affected in lateral parts of the mdDA neuronal population. The initial increase in TH-expressing cells and delay in subset specification could be due to the increase in expression of the bHLH factor Ascl1, known for its role in mdDA neuronal differentiation, upon loss of Tcf4. Taken together, our data identified a minor role for Tcf4 in mdDA neuronal development and subset specification.


2020 ◽  
pp. 251512742097966
Author(s):  
Birgitte Wraae ◽  
Candida Brush ◽  
Shahrokh Nikou

Significant research explores effectiveness of entrepreneurial curriculum, teaching innovations and programs, but less often studied is the role of entrepreneurship educators. The way that the educator sees his or her role relative to the students is of critical importance because this directly influences pedagogy choices, expectations for students and learning outcomes, as well as job satisfaction. While recent studies propose typologies characterizing pedagogical approaches of educators, few of these are based on the data from entrepreneurship educators. Framed within role identity theory, we conducted 13 in–depth interviews to examine how entrepreneurship educators perceive their role. Using the qualitative data analysis tool (NVivo), we analyzed how the relationship between their perceptions of their role and core value orientation is connected to teaching approaches. Results show that these educators view their roles as teacher-focused, network-focused, or student-focused and that these perspectives are associated with different perceptions of students’ role and learning objectives. Further, we find different levels of emphasis on roles and that personal core values are differentially linked to these roles. Implications and future research directions are discussed.


Author(s):  
Alec T. Nabb ◽  
Marvin Bentley

Neurons are polarized cells of extreme scale and compartmentalization. To fulfill their role in electrochemical signaling, axons must maintain a specific complement of membrane proteins. Despite being subject of considerable attention, the trafficking pathway of axonal membrane proteins is not well understood. Two pathways, direct delivery and transcytosis, have been proposed. Previous studies reached contradictory conclusions about which of these mediates delivery of axonal membrane proteins to their destination, in part because they evaluated long-term distribution changes and not vesicle transport. We developed a novel strategy to selectively label vesicles in different trafficking pathways and determined the trafficking of two canonical axonal membrane proteins, NgCAM and VAMP2. Results from detailed quantitative analyses of transporting vesicles differed substantially from previous studies and found that axonal membrane proteins overwhelmingly undergo direct delivery. Transcytosis plays only a minor role in axonal delivery of these proteins. In addition, we identified a novel pathway by which wayward axonal proteins that reach the dendritic plasma membrane are targeted to lysosomes. These results redefine how axonal proteins achieve their polarized distribution, a crucial requirement for elucidating the underlying molecular mechanisms. [Media: see text] [Media: see text] [Media: see text] [Media: see text]


Sign in / Sign up

Export Citation Format

Share Document