CD30 ligand in lymphoma patients with CD30+ tumors.

1997 ◽  
Vol 15 (11) ◽  
pp. 3355-3362 ◽  
Author(s):  
A Younes ◽  
U Consoli ◽  
V Snell ◽  
K Clodi ◽  
K O Kliche ◽  
...  

PURPOSE CD30 ligand (CD30L), which is expressed on resting B and activated T lymphocytes, can induce cell death in several CD30+ cell lines. Patients with CD30+ tumors (Hodgkin's disease and Ki-1+ non-Hodgkin's lymphoma) frequently have elevated soluble CD30 (sCD30) levels in their serum, which correlates with a poor prognosis. The role of sCD30 in protecting tumor cells from CD30L-mediated cell death and the pattern of CD30L expression on human peripheral-blood lymphocytes (PBLs) of normal donors and patients with CD30+ tumors are investigated. MATERIALS AND METHODS CD30L surface protein expression was determined by two-color flow cytometry on PBLs of patients with CD30+ tumors and normal individuals. CD30L levels were determined on subsets of PBLs before and after stimulation with phytohemagglutinin (PHA), anti-CD3 antibody, or CD40L. sCD30 was measured by enzyme-linked immunosorbent assay (ELISA). The apoptotic activity of membrane-bound CD30L was tested in a CD30+ cell line by the annexin V-binding method. RESULTS Unstimulated T lymphocytes of normal donors and patients with lymphoma rarely expressed CD30L surface protein, but were able to express it after stimulation with PHA or anti-CD3 antibody. Resting B cells of patients with CD30+ tumors had lower levels of detectable surface CD30L compared with normal donors (mean, 55% and 80.6%, respectively; P = .0008). Patients with high levels of serum sCD30 had lower detectable levels of CD30L on their PBLs (R2 = .72, P = .0008) and exogenous sCD30 blocked membrane-bound CD30L-mediated apoptosis in a CD30+ cell line. CONCLUSION In patients with CD30+ tumors, sCD30 can decrease the availability of CD30L on PBLs. Blocking the apoptosis-inducing activity of CD30L by its soluble receptor may explain how CD30+ tumors escape immunosurveillance and may be related to the reported poor prognosis of patients who have elevated sCD30 levels.

2010 ◽  
Vol 3 ◽  
pp. CMENT.S3147
Author(s):  
Kamal-Eldin Ahmed Abou-Elhamd

Apoptosis is an active process of programmed cell death. Fas is a cell-surface protein which is expressed on activated lymphocytes and known as CD95, TNFRSF6 or APO-1. Fas-L is ligand of Fas and known as CD95 LG or TNFSF6. Apoptosis or cell death is a result of binding of Fas-L to Fas which is expressed on the surfaces of these cells. Cancer cells escape this binding by overexpression of Fas-L or down expression of Fas. Fas and Fas-L exist in membrane bound and soluble forms. The serum level of sFas and sFas-L can be evaluated by immunostaining, immunohistochemical methods, immunofluorescence, flow cytometry and Western blotting. Head and neck squamous cell carcinoma diagnosis, staging and prognosis can be evaluated early and accurately by sFas and sFas-L expression levels detection.


2013 ◽  
Vol 13 (3) ◽  
pp. 414-421 ◽  
Author(s):  
Raquel T. Lima ◽  
Gemma A. Barron ◽  
Joanna A. Grabowska ◽  
Giovanna Bermano ◽  
Simranjeet Kaur ◽  
...  

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


2002 ◽  
Vol 364 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Alessandra GAMBERUCCI ◽  
Emanuele GIURISATO ◽  
Paola PIZZO ◽  
Maristella TASSI ◽  
Roberta GIUNTI ◽  
...  

In Jurkat and human peripheral blood T-lymphocytes, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, activated the influx of Ca2+, Ba2+ and Sr2+. OAG also caused plasma-membrane depolarization in Ca2+-free media that was recovered by the addition of bivalent cation, indicating the activation of Na+ influx. OAG-induced cation influx was (i) mimicked by the natural dacylglycerol 1-stearoyl-2-arachidonyl-sn-glycerol, (ii) not blocked by inhibiting protein kinase C or in the absence of phopholipase C activity and (iii) blocked by La3+ and Gd3+. Differently from OAG, both thapsigargin and phytohaemagglutinin activated a potent influx of Ca2+, but little influx of Ba2+ and Sr2+. Moreover, the influx of Ca2+ activated by thapsigargin and that activated by OAG were additive. Furthermore, several drugs (i.e. econazole, SKF96365, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2-aminoethoxy diphenylborate and calyculin-A), while inhibiting the influx of Ca2+ induced by both thapsigargin and phytohaemagglutinin, did not affect OAG-stimulated cation influx. Transient receptor potential (TRP) 3 and TRP6 proteins have been shown previously to be activated by diacylglycerol when expressed heterologously in animal cells [Hofmann, Obukhov, Schaefer, Harteneck, Gudermann and Schultz (1999) Nature (London) 397, 259–263]. In both Jurkat and peripheral blood T-lymphocytes, mRNA encoding TRP proteins 1, 3, 4 and 6 was detected by reverse transcriptase PCR, and the TRP6 protein was detected by Western blotting in a purified plasma-membrane fraction. We conclude that T-cells express a diacylglycerol-activated cation channel, unrelated to the channel involved in capacitative Ca2+ entry, and associated with the expression of TRP6 protein.


2004 ◽  
Vol 72 (3) ◽  
pp. 1530-1536 ◽  
Author(s):  
Edna I. Gergel ◽  
Martha B. Furie

ABSTRACT Some diseases are characterized by prevalence in the affected tissues of type 1 T lymphocytes, which secrete gamma interferon (IFN-γ) and other proinflammatory cytokines. For example, type 1 T cells predominate in the lesions of patients with Lyme disease, which is caused by the bacterium Borrelia burgdorferi. We used an in vitro model of the blood vessel wall to test the premise that the vascular endothelium actively recruits circulating type 1 T cells to such lesions. When T lymphocytes isolated from human peripheral blood were examined, the populations that traversed monolayers of resting human umbilical vein endothelial cells (HUVEC) or HUVEC stimulated by interleukin-1β or B. burgdorferi were markedly enriched for T cells that produced IFN-γ compared to the initially added population of T cells. No enrichment was seen for cells that produced interleukin-4, a marker for type 2 T lymphocytes. Very late antigen-4 and CD11/CD18 integrins mediated passage of the T cells across both resting and stimulated HUVEC, and the endothelium-derived chemokine CCL2 (monocyte chemoattractant protein 1) was responsible for the enhanced migration of T cells across stimulated HUVEC. These results suggest that the vascular endothelium may contribute to the selective accumulation of type 1 T cells in certain pathological lesions, including those of Lyme disease.


Sign in / Sign up

Export Citation Format

Share Document