Cyclin D1 Guanine/Adenine 870 Polymorphism With Altered Protein Expression Is Associated With Genomic Instability and Aggressive Clinical Biology of Esophageal Adenocarcinoma

2007 ◽  
Vol 25 (6) ◽  
pp. 698-707 ◽  
Author(s):  
Julie G. Izzo ◽  
Tsung-Teh Wu ◽  
Xifeng Wu ◽  
Joe Ensor ◽  
Rajyalakshmi Luthra ◽  
...  

Purpose Altered cyclin D1 (CD1), a cell cycle regulator, may play an important role in imparting aggressive nature to esophageal adenocarcinoma (EAC). CD1 gene single nucleotide polymorphism G/A870 results in two alternatively spliced transcripts, CD1a and CD1b. CD1b, preferentially encoded by the A870 allele, is putatively oncogenic. We hypothesized that CD1 A870 allele would be associated with higher CD1 protein expression, and increased genomic instability during EAC evolution, leading to more aggressive phenotype. Patients and Methods One hundred twenty-four archival specimens of EAC, and 39 associated Barrett's esophagus (BE) specimens were examined for CD1 genotype, CD1 protein expression, and chromosome 9 polysomy (representing genomic instability). We correlated CD1 genotypes with CD1 protein expression, genomic instability, age at diagnosis of EAC, and overall survival (OS). Results The A870 allele was associated with higher levels of CD1 protein expression in EAC (P = .032); in BE (P = .01) where it was associated with concomitant increased chromosome 9 polysomy (P = .002); and with a younger age at diagnosis (P < .001) and poor OS (P = .0003) of EAC patients. Conclusion Our data suggest that CD1 A870 background may be imparting aggressive phenotype to EAC. It provides a molecular basis to explain the clinical biology associated with CD1 polymorphism whereas aberrant nuclear accumulation of CD1 protein enhances the acquisition of genomic instability (ie, clonal diversity), thus leading to early age of EAC diagnosis and poor OS. CD1 genotyping with other biomarkers may help create a biomarker-based prognostic model for EAC and CD1 may also serve as a therapeutic target.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5287-5287
Author(s):  
Robert W Chen ◽  
Myo Htut ◽  
Britta Hoehn ◽  
Eamon Berge ◽  
William Robinson ◽  
...  

Abstract Mantle Cell Lymphoma (MCL) represents 5–10% of all non-Hodgkins lymphomas, making it an uncommon but difficult form of lymphoma to treat. It has the worst prognosis among the B cell lymphomas with median survival of three years. The genetic hallmark of MCL is the t(11,14)(q13;32) translocation causing amplification of cyclin D1 (CCND1). It is a well known cell cycle regulator. Multiple reports have shown a truncation in the cyclin D1 mRNA 3′ untranslated region. This truncation increases CCND1 protein expression by not only enhancing the half-life of CCND1 mRNA, but also evades microRNA regulation of mRNA translation. The dramatic overexpression of CCND1 mRNA and protein has been associated to poor clinical outcome in patients. We hypothesize that this truncation leads to a more aggressive phenotype and induces chemoresistance in MCL. We have identified 4 MCL cell lines (Granta-519, JVM-2, Jeko-1, and Z138) with different levels of the truncated CCND1 mRNA. We were able to show that Z138 and Jeko-1 have a much higher ratio of truncated CCND1 mRNA to the full length CCND1 mRNA as compared to Granta-519 and JVM-2. We were also able to show that this truncated mRNA leads to an increase in CCND1 protein expression. By using flow cytometry, we correlated the increase in CCND1 protein expression to faster cell cycle progression. We proposed that cell lines with increased CCND1 expression are phenotypically more aggressive, and would be able to continue cell cycle progression without serum support. We were able to arrest JVM-2 in G1 phase after 48 hours of serum starvation. However, we were not able to arrest cell cycle progression in Jeko-1 even after 96 hours of serum starvation. Western blot analysis shows that CCND1 protein expression is decreased in JVM-2 but remains unchanged in Jeko-1 with serum starvation. The same phenomenon was observed in Granta-519 and Z138. The MCL cell lines (Jeko-1 and Z-138) with more CCND1 protein expression were able to continue cell cycle progression in serum free media. The MCL cell lines (JVM-2 and Granta-519) with less CCND1 protein expression were not able to continue cell cycle progression in serum free media. This shows that CCND1 overexpression is associated with a more aggressive phenotype. We then treated the 4 MCL cell lines with varying concentrations of doxorubicin, a standard anthracycline chemotherapy used in the treatment of MCL patients. We used MTS assay to assess cell proliferation after treatment with doxorubicin. We found the IC 50 (inhibitory concentration 50%) of doxorubicin in these cell lines varied from 6nM to 600nM. The cell lines (Jeko-1 and Z-138) with more CCND1 protein expression have a much higher IC 50 as compared to the cell lines (JVM-2 and Granta-519) with less CCND1 protein expression. This demonstrates that CCND1 overexpression is associated with chemoresistance. We conclude truncation in CCND1 mRNA leads to increased CCND1 protein expression and faster cell cycle progression CCND1 overexpression is associated with an aggressive phenotype CCND1 overexpression is associated with chemoresistance.


Chromosoma ◽  
2021 ◽  
Vol 130 (1) ◽  
pp. 53-60
Author(s):  
Jessica Penin ◽  
Solenne Dufour ◽  
Virginie Faure ◽  
Sabrina Fritah ◽  
Daphné Seigneurin-Berny ◽  
...  

AbstractThe heat shock factor 1 (HSF1)-dependent transcriptional activation of human pericentric heterochromatin in heat-shocked cells is the most striking example of transcriptional activation of heterochromatin. Until now, pericentric heterochromatin of chromosome 9 has been identified as the primary target of HSF1, in both normal and tumor heat-shocked cells. Transcriptional awakening of this large genomic region results in the nuclear accumulation of satellite III (SATIII) noncoding RNAs (ncRNAs) and the formation in cis of specific structures known as nuclear stress bodies (nSBs). Here, we show that, in four different male cell lines, including primary human fibroblasts and amniocytes, pericentric heterochromatin of chromosome Y can also serve as a unique primary site of HSF1-dependent heterochromatin transcriptional activation, production of SATIII ncRNA, and nucleation of nuclear stress bodies (nSBs) upon heat shock. Our observation suggests that the chromosomal origin of SATIII transcripts in cells submitted to heat shock is not a determinant factor as such, but that transcription of SATIII repetitive units or the SATIII ncRNA molecules is the critical element of HSF1-dependent transcription activation of constitutive heterochromatin.


2005 ◽  
Vol 289 (6) ◽  
pp. C1457-C1465 ◽  
Author(s):  
Gustavo A. Nader ◽  
Thomas J. McLoughlin ◽  
Karyn A. Esser

The purpose of this study was to identify the potential downstream functions associated with mammalian target of rapamycin (mTOR) signaling during myotube hypertrophy. Terminally differentiated myotubes were serum stimulated for 3, 6, 12, 24, and 48 h. This treatment resulted in significant myotube hypertrophy (protein/DNA) and increased RNA content (RNA/DNA) with no changes in DNA content or indices of cell proliferation. During myotube hypertrophy, the increase in RNA content was accompanied by an increase in tumor suppressor protein retinoblastoma (Rb) phosphorylation and a corresponding increase in the availability of the ribosomal DNA transcription factor upstream binding factor (UBF). Serum stimulation also induced an increase in cyclin D1 protein expression in the differentiated myotubes with a concomitant increase in cyclin D1-dependent cyclin-dependent kinase (CDK)-4 activity toward Rb. The increases in myotube hypertrophy and RNA content were blocked by rapamycin treatment, which also prevented the increase in cyclin D1 protein expression, CDK-4 activity, Rb phosphorylation, and the increase in UBF availability. Our findings demonstrate that activation of mTOR is necessary for myotube hypertrophy and suggest that the role of mTOR is in part to modulate cyclin D1-dependent CDK-4 activity in the regulation of Rb and ribosomal RNA synthesis. On the basis of these results, we propose that common molecular mechanisms contribute to the regulation of myotube hypertrophy and growth during the G1 phase of the cell cycle.


2017 ◽  
Vol 265 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Sophie H. van Olphen ◽  
Katharina Biermann ◽  
Joel Shapiro ◽  
Bas P. L. Wijnhoven ◽  
Eelke L. A. Toxopeus ◽  
...  

2001 ◽  
Vol 277 (10) ◽  
pp. 8517-8523 ◽  
Author(s):  
Jodi R. Alt ◽  
Andrew B. Gladden ◽  
J. Alan Diehl

2002 ◽  
Vol 101 (4) ◽  
pp. 301-310 ◽  
Author(s):  
Hanlin L. Wang ◽  
Julia Wang ◽  
Shu-Yuan Xiao ◽  
Rex Haydon ◽  
Debra Stoiber ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4306
Author(s):  
Diana Maržić ◽  
Blažen Marijić ◽  
Tamara Braut ◽  
Stefan Janik ◽  
Manuela Avirović ◽  
...  

Background: The aim of this study was to (i) determine IMP3 protein expression in benign and malignant laryngeal lesions, (ii) compare its expression to Ki-67, p53, cyclin D1, and (iii) finally, to examine the prognostic power of IMP3 in squamous cell carcinomas of the larynx (LSSC). Methods: IMP3 protein expression was evaluated in 145 patients, including 62 LSCC, 45 dysplasia (25 with low and 20 with high-grade dysplasia), and 38 benign lesions (vocal cord polyps and nodules). Results: IMP3 was significantly higher expressed in LSCC compared to dysplasia and benign lesions (p < 0.001; p < 0.001, respectively). Similarly, higher expression patterns were observed for Ki-67 and p53, whereas cyclin D1 was equally distributed in all three lesions. IMP3 (p = 0.04) and Ki-67 (p = 0.02) expressions were significantly linked to neck node positivity, and IMP3 overexpression to worse disease-specific survival (p = 0.027). Conclusion: Since IMP3 showed significantly higher expression in laryngeal carcinomas, but not in high- or low-grade dysplasia, it serves as a useful marker to differentiate between invasive and noninvasive lesions. Higher IMP3 expression represented a significantly worse prognosticator for clinical outcomes of patients with squamous cell carcinoma of the larynx.


2010 ◽  
Vol 25 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Hemangini H. Vora ◽  
Shalvi V. Mehta ◽  
Shilin N. Shukla ◽  
Pankaj M. Shah

The present study evaluated 5 of the 8 main TP53 mutation hot spots in cancer by restriction site mutation analysis and compared the results with p53 protein expression in patients with cancer of the tongue. Tumor samples from 49 patients with tongue cancer were screened for TP53 mutations in exons 5 through 8 by PCR restriction site mutation analysis and for p53 protein expression by immunohistochemistry using the DO-7 antibody. Nuclear accumulation of p53 protein was seen in 22% (11/49) of the tumors, whereas none of the patients exhibited TP53 mutations in exons 5 through 8. The observed data suggest that TP53 mutations alone are not responsible for abnormal accumulation of p53 protein in tobacco-chewing-mediated tongue carcinogenesis.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1428-1440 ◽  
Author(s):  
Xunxian Liu ◽  
Julia T. Arnold ◽  
Marc R. Blackman

β-Catenin/T-cell factor signaling (β-CTS) plays multiple critical roles in carcinogenesis and is blocked by androgens in androgen receptor (AR)-responsive prostate cancer (PrCa) cells, primarily via AR sequestration of β-catenin from T-cell factor. Dehydroepiandrosterone (DHEA), often used as an over-the-counter nutritional supplement, is metabolized to androgens and estrogens in humans. The efficacy and safety of unregulated use of DHEA are unclear. We now report that DHEA induces β-CTS via increasing association of estrogen receptor (ER)-β with Dishevelled2 (Dvl2) in AR nonresponsive human PrCa DU145 cells, a line of androgen-independent PrCa (AiPC) cells. The induction is temporal, as assessed by measuring kinetics of the association of ERβ/Dvl2, protein expression of the β-CTS targeted genes, c-Myc and cyclin D1, and cell growth. However, in PC-3 cells, another human AiPC cell line, DHEA exerts no detectible effects, partly due to their lower expression of Gα-subunits and DHEA down-regulation of ERβ/Dvl2 association. When Gαq is overexpressed in PC-3 cells, β-CTS is constitutively induced, including increasing c-Myc and cyclin D1 protein expression. This effect involved increasing associations of Gαq/Dvl2 and ERβ/Dvl2 and promoted cell growth. These activities require ERβ in DU-145 and PC-3 cells because they are blocked by ICI 182–780 treatment inactivating ERβ, small interfering RNA administration depleting ERβ, or AR overexpression arresting ERβ. These data suggest that novel pathways activating β-CTS play roles in the progression of AiPC. Although DHEA may enhance PrCa cell growth via androgenic or estrogenic pathways, the effects of DHEA administration on clinical prostate function remain to be determined.


2021 ◽  
Vol 11 (3) ◽  
pp. 439-444
Author(s):  
Jiayi Ren ◽  
Lifang Wang ◽  
Jia Fu ◽  
Chunyang Wang ◽  
Yan Gong ◽  
...  

The incidence and mortality of lung cancer ranks first among all malignant tumors in the world. Because it is relatively asymptomatic at early stages, most patients do not become aware of the disease until it has progressed to an advanced stage. Advanced lung cancer metastasis results in systemic cachexia and effective treatment becomes challenging, leading to poor response and outcome. Therefore, the development of new drugs for the treatment of lung cancer is paramount. In this study, A549 cells were treated with different concentrations of red raspberry extract and the proliferation, migration, and invasion of cells were evaluated. The results indicated that red raspberry extract reduced the proliferation, migration, and invasion of A549 cells. Western blot analysis was used to detect the expression of the cyclin D1, N-cadherin, vimentin, E-cadherin, EGFR, and STAT3 proteins. Treatment with red raspberry extract reduced the expression of cyclin D1, N-cadherin, vimentin, EGFR, and STAT3, whereas the expression of E-cadherin increased. Following transfection of an EGFR overexpression vector into A549 cells, we observed a reduced inhibitory effect of the red raspberry extract on the proliferation, migration, and invasion of A549 cells. In addition, EGFR overexpression abrogated the increased expression of cyclin D1, N-cadherin, vimentin, EGFR, and STAT3 protein expression in A549 cells following extract treatment. In contrast, E-cadherin protein expression was decreased under these treatment conditions. Overall, this study suggests that red raspberry extract may reduce the proliferation, migration, invasion, and epithelialmesenchymal transition of A549 lung cancer cells by inhibiting the activation of the EGFR/STAT3 signaling pathway. These findings may lead to the development of new strategies to treat advanced lung cancer.


Sign in / Sign up

Export Citation Format

Share Document