scholarly journals Transient Expression of Interferon-Inducible p204 in the Early Stage Is Required for Adipogenesis in 3T3-L1 Cells

Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3141-3153 ◽  
Author(s):  
Jing Xiao ◽  
Bing Sun ◽  
Guo-ping Cai

A member of the interferon-inducible p200 family of proteins, p204, has recently been reported to function in the development of many mesoderm-derived tissues, such as bone, muscle, and cartilage. However, no published study has yet investigated the role of p204 in adipogenesis. Our preliminary experiments showed that p204 can be found in 3T3-L1 preadipocytes, and its expression was up-regulated in a differentiation-dependent manner. As such, we hypothesized that p204 is associated with adipogenesis and focused on the influence of p204 on adipogenesis. In the present study, we investigated the transient elevated expression and cytoplasm-to-nucleus translocation of p204 in the early stage of adipogenesis. To determine the effect of p204 on adipogenesis, p204-siRNA and expression vector were produced for p204 suppression and overexpression, respectively. The knockdown of p204 resulted in a significantly depressed adipocyte differentiation, whereas p204 overexpression promoted adipocyte differentiation. The mRNA expression of adipogenic markers, such as peroxisome-proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding-protein (C/EBP)α, lipoprotein lipase, and adipsin, was decreased by p204 suppression and increased by p204 overexpression. A coimmunoprecipitation assay coupled with an indirect immunofluorescence assay also indicated that p204 interacted and colocalized with C/EBPδ in the nucleus. Furthermore, the knockdown of p204 disrupted the interaction between p204 and C/EBPδ and partially suppressed the PPARγ transcriptional activity by dissociating C/EBPδ with the PPARγ promoter element. Collectively, our data indicate that the transient expression of p204 in the early stage is indispensable for adipocyte differentiation. Disruption of p204 expression patterns at this stage leads to irreversible damage in fat formation.

Author(s):  
Serena Stopponi ◽  
Yannick Fotio ◽  
Carlo Cifani ◽  
Hongwu Li ◽  
Carolina L Haass-Koffler ◽  
...  

Abstract Background and aims Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. Methods The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. Results Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. Conclusions Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


2021 ◽  
Vol 21 (7) ◽  
pp. 3943-3949
Author(s):  
Jaegoo Yeon ◽  
Sung-Suk Suh ◽  
Ui-Joung Youn ◽  
Badamtsetseg Bazarragchaa ◽  
Ganbold Enebish ◽  
...  

Iris bungei Maxim. (IB), which is native to China and Mongolia, is used as a traditional medicine for conditions such as inflammation, cancer, and bacterial infections. However, the effects of Iris bungei Maxim. on adipocyte differentiation have not been studied. In the present study, we first demonstrated the molecular mechanisms underlying the adipogenic activity of the methanol extract of Mongolian I. bungei Maxim. (IB). IB significantly enhanced intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. Moreover, IB markedly stimulated the expression of genes related to adipogenesis such as peroxisome proliferator-activated receptor γ, adiponectin, and aP2. In addition, we also observed that IB induces lipogenic genes such as fatty acid synthase, sterol regulatory element binding protein 1c, stearoyl-CoA desaturase, and acetyl-CoA carboxylase. Interestingly IB regulated adipocyte differentiation in both the early and middle stages. Taken together, these adipogenic and lipogenic effects of IB suggest its efficacy for the prevention and/or treatment of type 2 diabetes.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katia Mellal ◽  
Samy Omri ◽  
Mukandila Mulumba ◽  
Houda Tahiri ◽  
Carl Fortin ◽  
...  

Abstract In subretinal inflammation, activated mononuclear phagocytes (MP) play a key role in the progression of retinopathies. Little is known about the mechanism involved in the loss of photoreceptors leading to vision impairment. Studying retinal damage induced by photo-oxidative stress, we observed that cluster of differentiation 36 (CD36)-deficient mice featured less subretinal MP accumulation and attenuated photoreceptor degeneration. Moreover, treatment with a CD36-selective azapeptide ligand (MPE-001) reduced subretinal activated MP accumulation in wild type mice and preserved photoreceptor layers and function as assessed by electroretinography in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal activated MP by reducing pro-inflammatory markers. In isolated MP, MPE-001 induced dissociation of the CD36-Toll-like receptor 2 (TLR2) oligomeric complex, decreasing nuclear factor-kappa B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. In addition, MPE-001 caused an aerobic metabolic shift in activated MP, involving peroxisome proliferator-activated receptor-γ (PPAR-γ) activation, which in turn mitigated inflammation. Accordingly, PPAR-γ inhibition blocked the cytoprotective effect of MPE-001 on photoreceptor apoptosis elicited by activated MP. By altering activated MP metabolism, MPE-001 decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury characteristic of various vision-threatening retinal disorders.


2013 ◽  
Vol 304 (11) ◽  
pp. C1091-C1097 ◽  
Author(s):  
Takeshi Honda ◽  
Aiko Ishii ◽  
Makoto Inui

PDZRN3, a member of the PDZRN (or LNX) family of proteins, is essential for the differentiation of mesenchymal stem cells into myotubes, but it plays an inhibitory role in the differentiation of these cells into osteoblasts. Given that mesenchymal stem cells also differentiate into adipocytes, we examined the possible role of PDZRN3 in adipogenesis in mouse 3T3-L1 preadipocytes. The expression of PDZRN3 decreased at both the mRNA and protein levels during adipogenic differentiation. RNAi-mediated depletion of PDZRN3 enhanced the differentiation of 3T3-L1 cells into adipocytes as assessed on the basis of lipid accumulation. The upregulation of aP2 and CCAAT/enhancer-binding protein (C/EBP)-β during adipocyte differentiation was also enhanced in the PDZRN3-depleted cells, as was the induction of peroxisome proliferator-activated receptor-γ (PPARγ), an upstream regulator of aP2 and C/EBPα, at both the mRNA and protein levels. Among transcription factors that control the expression of PPARγ, we found that STAT5b, but not STAT5a, was upregulated in PDZRN3-depleted cells at both mRNA and protein levels. Tyrosine phosphorylation of STAT5b, but not that of STAT5a, was also enhanced at an early stage of differentiation by PDZRN3 depletion. In addition, the expression of C/EBPβ during the induction of differentiation was enhanced at the mRNA and protein levels in PDZRN3-depleted cells. Our results thus suggest that PDZRN3 negatively regulates adipogenesis in 3T3-L1 cells through downregulation of STAT5b and C/EBPβ and consequent suppression of PPARγ expression.


2007 ◽  
Vol 293 (1) ◽  
pp. E219-E227 ◽  
Author(s):  
Wei Liao ◽  
M. T. Audrey Nguyen ◽  
Takeshi Yoshizaki ◽  
Svetlana Favelyukis ◽  
David Patsouris ◽  
...  

Peroxisome proliferator-activated receptor-γ (PPAR-γ) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-γ from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-γ knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-γ suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-γ deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-γ-depleted cells displayed enhanced inflammatory responses to TNF-α stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-γ. In summary, 1) PPAR-γ is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-γ supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-γ may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.


2013 ◽  
Vol 51 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Xinxin Xiang ◽  
Wenjiao An ◽  
Changtao Jiang ◽  
Jing Zhao ◽  
Xian Wang ◽  
...  

Resistin is an adipocytokine leading to insulin resistance. Endotoxin/lipopolysaccharide (LPS) has been reported to decrease the expression of resistin mRNA and protein in both lean and db/db obese mice, although the underlying mechanism remains unclear. Several models such as ex vivo culture of adipose tissues, primary rat adipocytes and 3T3-L1 adipocytes were used to further characterize the effect of LPS on the expression of resistin. LPS attenuated both the resistin mRNA and protein in a time- and dose-dependent manner. In the presence of actinomycin D, LPS failed to reduce the half-life of resistin mRNA, suggesting a transcriptional mechanism. The lipid A fraction is crucial for the inhibition of resistin expression induced by LPS. Pharmacological intervention of c-Jun N-terminal kinase (JNK) reversed the inhibitory effect of LPS. LPS down-regulated CCAAT/enhancer-binding protein α (C/EBP-α; CEBPA) and peroxisome proliferator-activated receptor γ (PPAR-γ; PPARG), while activation of C/EBP-α or PPAR-γ by either over-expressing these transcriptional factors or by rosiglitazone, an agonist of PPAR-γ, blocked the inhibitory effect of LPS on resistin. C/EBP homologous protein (CHOP-10; DDIT3) was up-regulated by LPS, while a CHOP-10 antisense oligonucleotide reversed the decrement of resistin protein induced by LPS. Taken together, these results suggest that LPS inhibits resistin expression through a unique signaling pathway involving toll-like receptor 4, JNK, CHOP-10 and C/EBP-α/PPAR-γ.


Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4948-4956 ◽  
Author(s):  
Masataka Kudo ◽  
Akira Sugawara ◽  
Akira Uruno ◽  
Kazuhisa Takeuchi ◽  
Sadayoshi Ito

Abstract TNFα is known to inhibit adipocyte differentiation and induce insulin resistance. Moreover, TNFα is known to down-regulate peroxisome proliferator-activated receptor (PPAR)γ2, an adipocyte-specific nuclear receptor of insulin-sensitizer thiazolidinediones. To clarify molecular mechanisms of TNFα- mediated PPARγ2 down-regulation, we here examined the effect of TNFα on transcription regulation of PPARγ2 gene expression during the early stage of adipocyte differentiation. 3T3-L1 preadipocytes (2 d after 100% confluent) were incubated in a differentiation mixture (dexamethasone, insulin, 3-isobutyl-1-methlxanthine), with or without 50 ng/ml TNFα, for 24 h. TNFα significantly decreased PPARγ2 expression both at mRNA and protein levels (to ∼40%), as well as aP2 mRNA expression. The mouse PPARγ2 gene promoter region (2.2-kb) was isolated and was used for luciferase reporter assays by transient transfection. TNFα significantly suppressed PPARγ2 gene transcription (to ∼50%), and deletion analyses demonstrated that the suppression was mediated via CCAAT/enhancer-binding protein (C/EBP) binding elements at the −320/−340 region of the promoter. Moreover, TNFα significantly decreased expression of C/EBPδ mRNA and protein levels (to ∼40%). EMSA, using 3T3-L1 cells nuclear extracts with the −320/−340 region as a probe, demonstrated the binding of C/EBPδ to the element, which was significantly decreased by TNFα treatment. Overexpression of CEBP/δ prevented the TNFα-mediated suppression of PPARγ2 transactivation. Taken together, TNFα suppresses PPARγ2 gene transcription by the inhibition of C/EBPδ expression and its DNA binding during the early stage of adipocyte differentiation, which may contribute to the inhibition of adipocyte differentiation, as well as the induction of insulin resistance.


2008 ◽  
Vol 18 (2) ◽  
pp. 329-338 ◽  
Author(s):  
W. Wu ◽  
J. Celestino ◽  
M. R. Milam ◽  
K. M. Schmeler ◽  
R. R. Broaddus ◽  
...  

PTEN mutations have been implicated in the development of endometrial hyperplasia and subsequent cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists have demonstrated antineoplastic and chemopreventive effects. The purpose of this study was to evaluate the effects of the PPAR-γ agonist rosiglitazone on both PTEN wild type and PTEN null cell lines and in the PTEN heterozygote(+/−) murine model. Hec-1-A (PTEN wild type) and Ishikawa (PTEN null) cells were treated with rosiglitazone. Thirty-five female PTEN+/− mice were genotyped and placed into one of four groups for treatment for 18 weeks: A) PTEN wild type with 4 mg/kg rosiglitazone, B) PTEN+/− mice with vehicle, C) PTEN+/− mice with 4 mg/kg rosiglitazone, and D) PTEN+/− mice with 8 mg/kg rosiglitazone. Proliferation and apoptosis were measured by bromodeoxyuridine (BrdU) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling of DNA fragmentation sites assay. Rosiglitazone caused cell growth inhibition in both Hec-1-A and Ishikawa in a dose-dependent manner (P< 0.02 and P< 0.03, respectively). Rosiglitazone also induced apoptosis in both Hec-1-A (P< .001) and Ishikawa (P< .001) cells in a dose-dependent manner. In the murine model, rosiglitazone decreased proliferation of the endometrial hyperplastic lesions (B vs C; 39.7% vs 9.3% and B vs D; 39.7% vs 4.2%; P< 0.0001) and increased apoptosis of glandular endometrial epithelial cells (B vs C; 2.8% vs 22.4%; P< 0.0001 and B vs D; 2.8% vs 30.2%; P= 0.003). PPAR-γ agonist rosiglitazone inhibits proliferation and induces apoptosis in both PTEN intact and PTEN null cancer cell lines and in hyperplastic endometrial lesions in the PTEN+/− murine model.


Sign in / Sign up

Export Citation Format

Share Document