scholarly journals The Molecular Mechanisms Underlying the Regulation of the Biological Activity of Corticotropin-Releasing Hormone Receptors: Implications for Physiology and Pathophysiology

2006 ◽  
Vol 27 (3) ◽  
pp. 260-286 ◽  
Author(s):  
Edward W. Hillhouse ◽  
Dimitris K. Grammatopoulos

The CRH receptor (CRH-R) is a member of the secretin family of G protein-coupled receptors. Wide expression of CRH-Rs in the central nervous system and periphery ensures that their cognate agonists, the family of CRH-like peptides, are capable of exerting a wide spectrum of actions that underpin their critical role in integrating the stress response and coordinating the activity of fundamental physiological functions, such as the regulation of the cardiovascular system, energy balance, and homeostasis. Two types of mammal CRH-R exist, CRH-R1 and CRH-R2, each with unique splicing patterns and remarkably distinct pharmacological properties, but similar signaling properties, probably reflecting their distinct and sometimes contrasting biological functions. The regulation of CRH-R expression and activity is not fully elucidated, and we only now begin to fully understand the impact on mammalian pathophysiology. The focus of this review is the current and evolving understanding of the molecular mechanisms controlling CRH-R biological activity and functional flexibility. This shows notable tissue-specific characteristics, highlighted by their ability to couple to distinct G proteins and activate tissue-specific signaling cascades. The type of activating agonist, receptor, and target cell appears to play a major role in determining the overall signaling and biological responses in health and disease.

2020 ◽  
Vol 21 (15) ◽  
pp. 5475 ◽  
Author(s):  
Manuela Pennisi ◽  
Giuseppe Lanza ◽  
Luca Falzone ◽  
Francesco Fisicaro ◽  
Raffaele Ferri ◽  
...  

Increasing evidence suggests that Severe Acute Respiratory Syndrome-coronavirus-2 (SARS-CoV-2) can also invade the central nervous system (CNS). However, findings available on its neurological manifestations and their pathogenic mechanisms have not yet been systematically addressed. A literature search on neurological complications reported in patients with COVID-19 until June 2020 produced a total of 23 studies. Overall, these papers report that patients may exhibit a wide range of neurological manifestations, including encephalopathy, encephalitis, seizures, cerebrovascular events, acute polyneuropathy, headache, hypogeusia, and hyposmia, as well as some non-specific symptoms. Whether these features can be an indirect and unspecific consequence of the pulmonary disease or a generalized inflammatory state on the CNS remains to be determined; also, they may rather reflect direct SARS-CoV-2-related neuronal damage. Hematogenous versus transsynaptic propagation, the role of the angiotensin II converting enzyme receptor-2, the spread across the blood-brain barrier, the impact of the hyperimmune response (the so-called “cytokine storm”), and the possibility of virus persistence within some CNS resident cells are still debated. The different levels and severity of neurotropism and neurovirulence in patients with COVID-19 might be explained by a combination of viral and host factors and by their interaction.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Mojdeh Khajehlandi ◽  
Lotfali Bolboli ◽  
Marefat Siahkuhian ◽  
Mohammad Rami ◽  
Mohammadreza Tabandeh ◽  
...  

Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.


2019 ◽  
Vol 20 (19) ◽  
pp. 4901 ◽  
Author(s):  
Leonardo M. R. Ferreira ◽  
Teresa Cunha-Oliveira ◽  
Margarida C. Sobral ◽  
Patrícia L. Abreu ◽  
Maria Carmen Alpoim ◽  
...  

Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.


2010 ◽  
Vol 427 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Mariko Ishiguro ◽  
Hironori Yamamoto ◽  
Masashi Masuda ◽  
Mina Kozai ◽  
Yuichiro Takei ◽  
...  

The type IIa renal sodium-dependent phosphate (Na/Pi) co-transporter Npt2a is implicated in the control of serum phosphate levels. It has been demonstrated previously that renal Npt2a protein and its mRNA expression are both up-regulated by the thyroid hormone T3 (3,3′,5-tri-iodothyronine) in rats. However, it has never been established whether the induction was mediated by a direct effect of thyroid hormones on the Npt2a promoter. To address the role of Npt2a in T3-dependent regulation of phosphate homoeostasis and to identify the molecular mechanisms by which thyroid hormones modulate Npt2a gene expression, mice were rendered pharmacologically hypo- and hyper-thyroid. Hypothyroid mice showed low levels of serum phosphate and a marked decrease in renal Npt2a protein abundance. Importantly, we also showed that Npt2a-deficient mice had impaired serum phosphate responsiveness to T3 compared with wild-type mice. Promoter analysis with a luciferase assay revealed that the transcriptional activity of a reporter gene containing the Npt2a promoter and intron 1 was dependent upon TRs (thyroid hormone receptors) and specifically increased by T3 in renal cells. Deletion analysis and EMSAs (electrophoretic mobility-shift assays) determined that there were unique TREs (thyroid-hormone-responsive elements) within intron 1 of the Npt2a gene. These results suggest that Npt2a plays a critical role as a T3-target gene, to control phosphate homoeostasis, and that T3 transcriptionally activates the Npt2a gene via TRs in a renal cell-specific manner.


2001 ◽  
Vol 15 (3) ◽  
pp. 467-475 ◽  
Author(s):  
Lori L. Amma ◽  
Angel Campos-Barros ◽  
Zhendong Wang ◽  
Björn Vennström ◽  
Douglas Forrest

Abstract Type 1 deiodinase (D1) metabolizes different forms of thyroid hormones to control levels of T3, the active ligand for thyroid hormone receptors (TR). The D1 gene is itself T3-inducible and here, the regulation of D1 expression by TRα1 and TRβ, which act as T3-dependent transcription factors, was investigated in receptor-deficient mice. Liver and kidney D1 mRNA and activity levels were reduced in TRβ−/− but not TRα1−/− mice. Liver D1 remained weakly T3 inducible in TRβ–/– mice whereas induction was abolished in double mutant TRα1–/–TRβ–/– mice. This indicates that TRβ is primarily responsible for regulating D1 expression whereas TRα1 has only a minor role. In kidney, despite the expression of both TRα1 and TRβ, regulation relied solely on TRβ, thus revealing a marked tissue restriction in TR isotype utilization. Although TRβ and TRα1 mediate similar functions in vitro, these results demonstrate differential roles in regulating D1 expression in vivo and suggest that tissue-specific factors and structural distinctions between TR isotypes contribute to functional specificity. Remarkably, there was an obligatory requirement for a TR, whether TRβ or TRα1, for any detectable D1 expression in liver. This suggests a novel paradigm of gene regulation in which the TR sets both basal expression and the spectrum of induced states. Physiologically, these findings suggest a critical role for TRβ in regulating the thyroid hormone status through D1-mediated metabolism.


2021 ◽  
Author(s):  
Lingyan Xing ◽  
Rui Chai ◽  
jiaqi wang ◽  
Jiaqi Lin ◽  
Hanyang Li ◽  
...  

The pMN domain is a restricted domain in the ventral spinal cords, defined by the expression of olig2 gene. The fate determination of pMN progenitors is highly temporally and spatially regulated, with motor neurons and oligodendrocyte progenitor cells (OPCs) developing sequentially. Insight into the heterogeneity and molecular programs of pMN progenitors is currently lacking. With the zebrafish model, we identified multiple states of neural progenitors using single-cell sequencing: proliferating progenitors, common progenitors for both motor neurons and OPCs, and restricted precursors for either motor neurons or OPCs. We found specific molecular programs for neural progenitor fate transition, and manipulations of representative genes in the motor neuron or OPC lineage confirmed their critical role in cell fate determination. The transcription factor NPAS3 is necessary for the development of the OPC lineage and can interact with many known genes associated with schizophrenia. Deciphering progenitor heterogeneity and molecular mechanisms for these transitions will elucidate the formation of complex neuron-glia networks in the central nervous system during development, and understand the basis of neurodevelopmental disorders.


2021 ◽  
Author(s):  
Gerald I Nwosu ◽  
Felicia Mermer ◽  
Carson Flamm ◽  
Sarah Poliquin ◽  
Wangzhen Shen ◽  
...  

We have previously studied the molecular mechanisms of solute carrier family 6 member 1 (SLC6A1) associated with a continuum of neurodevelopmental disorders, including various epilepsy syndromes, autism, and intellectual disability. Based on functional assays of variants in a large cohort with heterogenous clinical phenotypes, we conclude that partial or complete loss of GABA uptake function in the mutant GAT-1 is the primary etiology as identified in GABAA receptor mutation-mediated epilepsy and in cystic fibrosis. Importantly, we identified that there are common patterns of the mutant protein trafficking from biogenesis, oligomerization, glycosylation, and translocation to the cell membrane across variants with the conservation of this process across cell types. Conversely any approach to facilitate membrane trafficking would increase presence of the functional protein in the targeted destination in all involved cells. PBA is an FDA-approved drug for pediatric use and is orally bioavailable so it can be quickly translated to patient use. It has been demonstrated that PBA can correct protein misfolding, reduce ER stress, and attenuate unfolded protein response in neurodegenerative diseases, it has also showed promise in treatment of cystic fibrosis. The common cellular mechanisms shared by the mutant GAT-1 and the mutant cystic fibrosis transmembrane conductance regulator led us to test if PBA and other pharmaco-chaperones could be a potential treatment option for SLC6A1 mutations. We examined the impact of PBA and other small molecules in a library of variants and in cell and knockin mouse models. Because of the critical role of astrocytic GAT-1 deficit in seizures, we focused on astrocytes, and demonstrated that the existence of the mutant GAT-1 retained the wildtype GAT-1, suggesting aberrant protein oligomerization and trafficking caused by the mutant GAT-1. PBA increased GABA uptake in both mouse and human astrocytes bearing the mutations. Importantly, PBA increased GAT-1 expression and suppressed spike wave discharges (SWDS) in the heterozygous knockin mice. Although the detailed mechanisms of action for PBA are ambiguous, it is likely that PBA can facilitate the forward trafficking of the wildtype GAT-1 favoring over the mutant GAT-1, thus increasing GABA uptake. Since all patients with SLC6A1 mutations are heterozygous and carry one wildtype functional allele, this suggests a great opportunity for treatment development by leveraging the endogenous protein trafficking pathway to promote forward trafficking of the wildtype in combination with enhancing the disposal of the mutant allele as treatment mode. The study opens a novel avenue of treatment development for genetic epilepsy via drug repurposing.


PEDIATRICS ◽  
1978 ◽  
Vol 62 (6) ◽  
pp. 1128-1133
Author(s):  
Jack Fishman ◽  
Charles Martucci

Assessment of the biological potency of an estrogen in the human has been and remains a formidable task. The problem arises not only from the lack of a readily distinguished physiological endpoint, but also from the diversity of the biological actions of the estrogens. Estrogens exert proliferative effects in recognized target tissues such as endometrium, vagina, and breast,1 and this action is the one commonly associated with the term "estrogenicity." Estrogens, however, also participate in inducing a host of other peripheral responses in tissues such as blood, bone, skin, and others.2 More importantly, the estrogens also exercise major regulatory functions in the central nervous system, including control of pituitary hormone secretion3 and influencing behavior such as food intake4 and sexual receptivity.5 Much attention had been devoted to the design of estrogen structures that would exhibit a specific type of estrogenic activity, such as gonadotropic regulation, without retaining any uterotropic action. Despite the vast numbers of structures synthesized, little clear-cut separation of these activities has been achieved, suggesting that these dual actions of estrogens may be inextricably linked to each other. On the other hand, much effort has also gone into the study of the mechanism of estrogen action in the uterus and in the central nervous system; despite much progress in both directions, little evidence of a commonality between these two responses to estradiol has so far emerged, suggesting that they may not be directly linked. In our studies, we sought to examine whether estradiol metabolism may play a critical role in the expression of the biological activity of the female sex hormone.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingshuo Xu ◽  
Guiran Xiao ◽  
Li Liu ◽  
Minglin Lang

AbstractAlzheimer’s disease (AD) is the most devastating neurodegenerative disorder. Due to the increase in population and longevity, incidence will triple by the middle of the twenty-first century. So far, no treatment has prevented or reversed the disease. More than 20 years of multidisciplinary studies have shown that brain zinc dyshomeostasis may play a critical role in AD progression, which provides encouraging clues for metal-targeted therapies in the treatment of AD. Unfortunately, the pilot clinical application of zinc chelator and/or ionophore strategy, such as the use of quinoline-based compounds, namely clioquinol and PBT2, has not yet been successful. The emerging findings revealed a list of key zinc transporters whose mRNA or protein levels were abnormally altered at different stages of AD brains. Furthermore, specifically modulating the expression of some of the zinc transporters in the central nervous system through genetic methods slowed down or prevented AD progression in animal models, resulting in significantly improved cognitive performance, movement, and prolonged lifespan. Although the underlying molecular mechanisms are not yet fully understood, it shed new light on the treatment or prevention of the disease. This review considers recent advances regarding AD, zinc and zinc transporters, recapitulating their relationships in extending our current understanding of the disease amelioration effects of zinc transport proteins as potential therapeutic targets to cure AD, and it may also provide new insights to identify novel therapeutic strategies for ageing and other neurodegenerative diseases, such as Huntington’s and Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document