scholarly journals Histology of larval eye—antennal disks and cephalic ganglia of Drosophila cultured in vitro

Development ◽  
1966 ◽  
Vol 15 (3) ◽  
pp. 271-279
Author(s):  
Imogene Schneider

In the past decade, a relatively large number of reports have been published on the culture in vitro of organs of Drosophila melanogaster. The majority of these reports have been concerned with the development of the eye-antennal complex explanted, with or without the attached cephalic ganglia, from the prepupal stage (Demal, 1956) or from late second and third larval instar stages (Kuroda & Yamaguchi, 1956; Gottschewski, 1958, 1960, 1962; Gottschewski & Querner, 1961; Fugio, 1962; Schneider, 1964). With the exception of the work of Demal (1956), the above reports have been confined to descriptions of the developing explants solely in morphological terms and, as such, are not wholly adequate for comparisons to be made between development in vivo and in vitro. If, however, such descriptions are supplemented with histological studies, a more valid appreciation can be gained of the potentialities as well as the limitations of such explants under conditions in vitro.

2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2543
Author(s):  
Ruidong Ni ◽  
Suzeeta Bhandari ◽  
Perry R. Mitchell ◽  
Gabriela Suarez ◽  
Neel B. Patel ◽  
...  

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


Genetics ◽  
1982 ◽  
Vol 100 (2) ◽  
pp. 259-278
Author(s):  
Hideo Tsuji

ABSTRACT Sister chromatid exchanges (SCEs) under in vivo and in vitro conditions were examined in ganglion cells of third-instar larvae of Drosophila melanogaster (Oregon-R). In the in vivo experiment, third-instar larvae were fed on synthetic media containing 5-bromo-2′-deoxyuridine (BrdUrd). After two cell cycles, ganglia were dissected and treated with colchicine. In the in vitro experiment, the ganglia were also incubated in media containing BrdUrd for two cell cycles, and treated with colchicine. SCEs were scored in metaphase stained with Hoechst 33258 plus Giemsa. The frequencies of SCEs stayed constant in the range of 25-150 vg/ml and 0.25-2.5 vg/ml of BrdUrd in vivo and in vitro, respectively. SCEs gradually increased at higher concentrations, strongly suggesting that at least a fraction of the detected SCEs are spontaneous. The constant levels of SCE frequency were estimated, on the average, at 0.103 per cell per two cell cycles for females and 0.101 for males in vivo and at 0.096 for females and 0.091 for males in vitro. No difference was found in the SCE frequency between sexes at any of the BrdUrd concentrations. The analysis for the distribution of SCEs within chromosomes revealed an extraordinarily high proportion of the SCEs at the junctions between euchromatin and heterochromatin; the remaining SCEs were preferentially localized in the euchromatic regions of the chromosomes and in the heterochromatic Y chromosome. These results were largely inconsistent with those of Gatti et al. (1979).


1979 ◽  
Vol 177 (2) ◽  
pp. 559-567 ◽  
Author(s):  
C S Heng-Khoo ◽  
R B Rucker ◽  
K W Buckingham

Evidence is presented for the presence of precursor to tropoelastin in chick arterial extracts. The precursor is approx. 100 000 daltons in size. It is suggested to be a precursor to tropoelastin (72 000 daltons). This protein may be observed in culture in vitro if appropriate precautions are taken to inhibit proteolysis. Once synthesized, it appears to be converted into tropoelastin within 10–20 min. The protein may also be detected in vivo. When 1-day-old cockerels were fed on a copper-deficient diet (less than 1 p.p.m. to inhibit cross-linking) containing epsilon-aminohexanoic acid (0.2%) to retard proteolysis and then injected wiht [3H]valine, extraction of arterial proteins 12h after injection resulted in detection of two major peaks of [3H]valine-labelled protein with pI values of pH 7.0 and 5.0 respectively. The protein that focused at pH 7.0 was estimated to be about 100 000 daltons in size and could be shown to be converted into a more basic protein with the properties of tropoelastin. It is speculated that the protein with pI 5.0 may be yet another extension peptide. The data appear to be in keeping with similar observations by ourselves and others that a proform of tropoelastin exists, and, in at least one step before conversion into tropoelastin, exists as a 100 000-dalton protein subunit.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


Author(s):  
Beate Gündel ◽  
Xinyuan Liu ◽  
Matthias Löhr ◽  
Rainer Heuchel

Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.


Sign in / Sign up

Export Citation Format

Share Document