scholarly journals Lie detection in the brain - Moral, social, legal and religious challenges

Bioethica ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 72
Author(s):  
Chrysa G Poulou

Lie detection and recognition has been an ardent human desire since ancient times. Over the centuries, various methods have been devised to detect fraud. Some methods are low-tech, like the recognition of specialized facial expressions, while others use devices, such as the polygraph or "lie detector" designed in the early 20th century, which measure changes in human body like sweating, heart rate and blood pressure, in order to detect the lie. These methods have various applications in areas such as justice, the military and the secret services. Recent attempts to detect falsehood have focused on measuring brain activity. This approach, unlike previous emotional arousal methods, detects physiological changes associated with cognitive processes during deception and therefore, according to the proponents of the technique, could detect the process of deception itself. The most well-known method of detecting a "neurophysiological difference between deception and truth" in the brain is functional Magnetic Resonance Imaging (fMRI), an MRI brain scan which reveals that deception is located in the prefrontal cortex, just behind the forehead.However, how accurate and reliable are these “brain mapping” approaches to detect lies? What are the moral, legal, religious and social issues arising from the “invasion” of so-called neuroscience into personal data, individual freedom, and the right of non-self-incrimination and the "free will" of human beings? Critical questions, addressed in this paper, in an attempt to approach lie detection in the brain and the challenges - concerns that may determine the way we perceive human society in the future.

This is a data visualization art piece using 10 seconds of mind waves recordings of the human, captured with EEG sensor.10 seconds of Alpha, Beta, Gamma & Theta brain waves while meditating are recorded, the different wave channels are categorized to state when the right brain representing artistic brain activity, isolating the ranges for each channel when the brain channels were more meditating and imaginative. Based on the waves of the brain obtained, we will be able to deduce few attributes such as attention span and mood. The moods we will be trying to assess and display here the level of happiness, sadness, anger along with attention span and meditation level (Concentration level).


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Ali Yoonessi ◽  
Seyed Amir Hossein Batouli ◽  
Iman Ahmadnezhad ◽  
Hamid Soltanian-zadeh

Background: Addiction is currently one of the problems of human society. Drug abuse is one of the most important issues in the field of addiction. Methamphetamine (crystal) is one of the drugs that has been abused in recent decades. Methods: In this case-control study, 10 individuals aged 20 to 40 years old with at least 2 years of experience of methamphetamine consumption without any history of drug use or other stimulants from clients and drug withdrawal centers in Tehran City, and 10 healthy volunteers were selected. Age, social status, and economic status of addicts were included in the fMRI apparatus, and 90 selected pleasurable, non-pleasurable, and neutral images (IAPS) were displayed by the projector through an event-related method. The playback time of each photo was 3 s, and after this process, the person outside the device, without the time limit selected the enjoyable and unpleasant images. Results: The results showed that there was no significant difference between the groups in terms of age, alcohol use, and smoking history (P < 0.05). There was no significant difference in terms of the age at first use between members of the methamphetamine-dependent group. Also, the methamphetamine-dependent group showed more brain activity in their pre-center and post-center gyrus than the normal (control) group. Conclusions: According to the results obtained in this study, in general, it can be concluded that there are some areas in the brain of addicts that are activated when watching pleasant photos, while these areas are not active in the brains of normal people.


2021 ◽  
Vol 19 (3) ◽  
pp. 17-25
Author(s):  
Dr. Sohail Adnan ◽  
Dr. Mubasher Shah ◽  
Dr. Syed Fahim Shah ◽  
Dr. Fahad Naim ◽  
Dr. Akhtar Ali ◽  
...  

Background: Consciousness has remained a difficult problem for the scientists to explore its relationship to the brain activity. This is the first paper that presents the significance of focal areas of the cerebral cortex for consciousness. Objectives: To determine if consciousness is produced by the activity of the whole brain or one of its focal areas. Methods: We have performed a prospective cross-sectional study in eighty patients of acute ischemic stroke. The neurovascular territory of the middle cerebral artery (MCA) was sectioned into four similar areas. The association of any of these focal areas to consciousness was observed after their dysfunction with ischemic strokes. Results: Of the eighty patients, 57.5 % were males and 42.5 % were females. Mean age was 63 years ± 7 SD. The righthanded patients were 90 % (72) of the whole sample. Focal areas of the right MCA were generally less prone to consciousness disorder. Average statistics of the focal infarctions of the right MCA showed no tendency for consciousness disorder on the Glasgow coma scale (GCS) [Mean GCS of all focal areas; 14.5, SD; 0.71, 95 % CI; 14.27 to 14.72, P= 0.0000004]. Altered consciousness with focal infarctions of the territory of left MCA was also less likely [Mean GCS of all focal areas; 14.2, SD; 1.01, 95 % CI; 13.88 to 14.51, P= 0.0004]. Conclusion: Consciousness is not determined by the activity of a focal area of the cerebral cortex. Perhaps, we get our consciousness from the activity of “Neuronal Network of Coordination”.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


2011 ◽  
Vol 23 (11) ◽  
pp. 3620-3636 ◽  
Author(s):  
David B. Miele ◽  
Tor D. Wager ◽  
Jason P. Mitchell ◽  
Janet Metcalfe

Judgments of agency refer to people's self-reflective assessments concerning their own control: their assessments of the extent to which they themselves are responsible for an action. These self-reflective metacognitive judgments can be distinguished from action monitoring, which involves the detection of the divergence (or lack of divergence) between observed states and expected states. Presumably, people form judgments of agency by metacognitively reflecting on the output of their action monitoring and then consciously inferring the extent to which they caused the action in question. Although a number of previous imaging studies have been directed at action monitoring, none have assessed judgments of agency as a potentially separate process. The present fMRI study used an agency paradigm that not only allowed us to examine the brain activity associated with action monitoring but that also enabled us to investigate those regions associated with metacognition of agency. Regarding action monitoring, we found that being “out of control” during the task (i.e., detection of a discrepancy between observed and expected states) was associated with increased brain activity in the right TPJ, whereas being “in control” was associated with increased activity in the pre-SMA, rostral cingulate zone, and dorsal striatum (regions linked to self-initiated action). In contrast, when participants made self-reflective metacognitive judgments about the extent of their own control (i.e., judgments of agency) compared with when they made judgments that were not about control (i.e., judgments of performance), increased activity was observed in the anterior PFC, a region associated with self-reflective processing. These results indicate that action monitoring is dissociable from people's conscious self-attributions of control.


2013 ◽  
Vol 109 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Luís Aureliano Imbiriba ◽  
Maitê Mello Russo ◽  
Laura Alice Santos de Oliveira ◽  
Ana Paula Fontana ◽  
Erika de Carvalho Rodrigues ◽  
...  

It is well established that the mental simulation of actions involves visual and/or somatomotor representations of those imagined actions. To investigate whether the total absence of vision affects the brain activity associated with the retrieval of motor representations, we recorded the readiness potential (RP), a marker of motor preparation preceding the execution, as well as the motor imagery of the right middle-finger extension in the first-person (1P; imagining oneself performing the movement) and in the third-person (3P; imagining the experimenter performing the movement) modes in 19 sighted and 10 congenitally blind subjects. Our main result was found for the single RP slope values at the Cz channel (likely corresponding to the supplementary motor area). No difference in RP slope was found between 1P and 3P in the sighted group, suggesting that similar motor preparation networks are recruited to simulate our own and other people's actions in spite of explicit instructions to perform the task in 1P or 3P. Conversely, reduced RP slopes in 3P compared with 1P found in the blind group indicated that they might have used an alternative, nonmotor strategy to perform the task in 3P. Moreover, movement imagery ability, assessed both by means of mental chronometry and a modified version of the Movement Imagery Questionnaire-Revised, indicated that blind and sighted individuals had similar motor imagery performance. Taken together, these results suggest that complete visual loss early in life modifies the brain networks that associate with others' action representations.


2020 ◽  
Vol 9 (11) ◽  
pp. e84691110016
Author(s):  
Bruna Corrêa Nolêto ◽  
Fernanda Rodrigues de Araújo Paiva Campelo ◽  
Karleth Costa Spíndola Rodrigues ◽  
Letice Mendes Ribeiro ◽  
Mauricio Salviano

In the last few decades, there have been advances in the field of innovative technologies used for the rehabilitation of people with a motor disability. A great example is the Brain-Machine Interface (BMI) technologies, which allow the control of machines through the brain activity of individuals and contributes to a reorganization of their motor and sensory systems. Thus, several evidences have suggested the use of technologies in the rehabilitation of these patients. The aim of this study was to perform a literature review on the use of technologies applied to motor rehabilitation. To carry out this study, a search for scientific articles was performed in the Pubmed, Scielo and Lilacs databases, in addition to the dissertations and theses found on the CAPES database. There were a total of 24 references, published between 2002 and 2020. According to the literature studied, there is an increase in resources that use technologies as therapeutic options. Many of the conventional interventions are being replaced or associated with these innovative technologies. With the advent of BMI technology and its use in human beings, a technological revolution can be observed in several biomedical areas, thus allowing a multidisciplinary application in the rehabilitation of motor, sensory or cognitive functions in patients. Despite the advances, this subject still shows controversies and before a broad recommendation, more randomized studies and a greater ethical recommendation on the subject will be needed.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Seon-Ok Kim ◽  
Ji-Eun Jeong ◽  
Yun-Ah Oh ◽  
Ha-Ram Kim ◽  
Sin-Ae Park

This study aimed to compare the brain activity and emotional states of elementary school students during horticultural and nonhorticultural activities. A total of 30 participants with a mean age of 11.4 ± 1.3 years were included. This experiment was conducted at Konkuk University campus in Korea. Participants performed horticultural activities such as harvesting, planting, sowing seeds, and mixing soil. Nonhorticultural activities included playing with a ball, solving math problems, watching animation videos, folding paper, and reading a book. The study had a crossover experimental design. Brain activity of the prefrontal lobes was measured by electroencephalography during each activity for 3 minutes. On completion of each activity, participants answered a subjective emotion questionnaire using the semantic differential method (SDM). Results showed that relative theta (RT) power spectrum was significantly lower in both prefrontal lobes of participants when engaged in harvesting and reading a book. The relative mid beta (RMB) power spectrum was significantly higher in both prefrontal lobes when participants engaged in harvesting and playing with a ball. The ratio of the RMB power spectrum to the RT power spectrum reflects concentration. This ratio increased during harvesting activity, indicating that children’s concentration also increased. The sensorimotor rhythm (SMR) from mid beta to theta (RSMT), another indicator of concentration, was significantly higher in the right prefrontal lobe during harvesting than during other activities. Furthermore, SDM results showed that the participants felt more natural and relaxed when performing horticultural activities than nonhorticultural activities. Horticultural activities may improve brain activity and psychological relaxation in children. Harvesting activity was most effective for improving children’s concentration compared with nonhorticultural activities.


2020 ◽  
Vol 15 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Lifen Zheng ◽  
Wenda Liu ◽  
Yuhang Long ◽  
Yu Zhai ◽  
Hui Zhao ◽  
...  

Abstract Human beings organise socially. Theories have posited that interpersonal neural synchronisation might underlie the creation of affiliative bonds. Previous studies tested this hypothesis mainly during a social interaction, making it difficult to determine whether the identified synchronisation is associated with affiliative bonding or with social interaction. This study addressed this issue by focusing on the teacher–student relationship in the resting state both before and after a teaching period. Brain activity was simultaneously measured in both individuals using functional near-infrared spectroscopy. The results showed a significant increase in brain synchronisation at the right sensorimotor cortex between the teacher and student in the resting state after, but not before, the teaching period. Moreover, the synchronisation increased only after a turn-taking mode of teaching but not after a lecturing or video mode of teaching. A chain mediation analysis showed that brain synchronisation during teaching partially mediated the relationship between the brain synchronisation increase in the resting state and strength of the affiliative bond. Finally, both role assignment and social interaction were found to be required for affiliative bonding. Together, these results support the hypothesis that interpersonal synchronisation in brain activity underlies affiliative bonding and that social interaction mechanically mediates the bonding process.


2020 ◽  
Vol 15 (12) ◽  
pp. 1326-1335
Author(s):  
Zhihao Wang ◽  
Yiwen Wang ◽  
Xiaolin Zhou ◽  
Rongjun Yu

Abstract People commonly use bluffing as a strategy to manipulate other people’s beliefs about them for gain. Although bluffing is an important part of successful strategic thinking, the inter-brain mechanisms underlying bluffing remain unclear. Here, we employed a functional near-infrared spectroscopy hyperscanning technique to simultaneously record the brain activity in the right temporal-parietal junction in 32 pairs of participants when they played a bluffing game against each other or with computer opponents separately. We also manipulated the penalty for bluffing (high vs low). Under the condition of high relative to low penalty, results showed a higher bluffing rate and a higher calling rate in human-to-human as compared to human-to-computer pairing. At the neural level, high relative to low penalty condition increased the interpersonal brain synchronization (IBS) in the right angular gyrus (rAG) during human-to-human as compared to human-to-computer interaction. Importantly, bluffing relative to non-bluffing, under the high penalty and human-to-human condition, resulted in an increase in response time and enhanced IBS in the rAG. Participants who bluffed more frequently also elicited stronger IBS. Our findings support the view that regions associated with mentalizing become synchronized during bluffing games, especially under the high penalty and human-to-human condition.


Sign in / Sign up

Export Citation Format

Share Document