scholarly journals Assessment of clinical and microbiota responses to fecal microbial transplantation in adult horses with diarrhea

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244381
Author(s):  
Caroline A. McKinney ◽  
Daniela Bedenice ◽  
Ana P. Pacheco ◽  
Bruno C. M. Oliveira ◽  
Mary-Rose Paradis ◽  
...  

Background and aims Fecal microbial transplantation (FMT) is empirically implemented in horses with colitis to facilitate resolution of diarrhea. The purpose of this study was to assess FMT as a clinical treatment and modulator of fecal microbiota in hospitalized horses with colitis. Methods A total of 22 horses with moderate to severe diarrhea, consistent with a diagnosis of colitis, were enrolled at two referral hospitals (L1: n = 12; L2: n = 10). FMT was performed in all 12 patients on 3 consecutive days at L1, while treatment at L2 consisted of standard care without FMT. Manure was collected once daily for 4 days from the rectum in all colitis horses, prior to FMT for horses at L1, and from each manure sample used for FMT. Fecal samples from 10 clinically healthy control horses housed at L2, and 30 healthy horses located at 5 barns in regional proximity to L1 were also obtained to characterize the regional healthy equine microbiome. All fecal microbiota were analyzed using 16S amplicon sequencing. Results and conclusions As expected, healthy horses at both locations showed a greater α-diversity and lower β-diversity compared to horses with colitis. The fecal microbiome of healthy horses clustered by location, with L1 horses showing a higher prevalence of Kiritimatiellaeota. Improved manure consistency (lower diarrhea score) was associated with a greater α-diversity in horses with colitis at both locations (L1: r = -0.385, P = 0.006; L2: r = -0.479, P = 0.002). Fecal transplant recipients demonstrated a greater overall reduction in diarrhea score (median: 4±3 grades), compared to untreated horses (median: 1.5±3 grades, P = 0.021), with a higher incidence in day-over-day improvement in diarrhea (22/36 (61%) vs. 10/28 (36%) instances, P = 0.011). When comparing microbiota of diseased horses at study conclusion to that of healthy controls, FMT-treated horses showed a lower mean UniFrac distance (0.53±0.27) than untreated horses (0.62±0.26, P<0.001), indicating greater normalization of the microbiome in FMT-treated patients.

2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Sreenatha Kirakodu ◽  
Jin Chen ◽  
Janis Gonzalez Martinez ◽  
Octavio A. Gonzalez ◽  
Jeffrey Ebersole

ABSTRACT This investigation compared the microbiomes colonizing teeth during the initiation, progression, and resolution of periodontitis in nonhuman primates (Macaca mulatta) at different ages. Subgingival plaque samples were collected at baseline; 0.5, 1, and 3 months following ligature-induced periodontitis; and following naturally occurring disease resolution at 5 months. Samples were analyzed using 16S amplicon sequencing to identify bacterial profiles across age groups: young (<3 years of age), adolescent (3 to 7 years), adult (12 to 15 years), and aged (17 to 23 years). α-Diversity of the microbiomes was greater in the adult/aged samples than in the young/adolescent samples. β-Diversity of the samples demonstrated clear age group differences, albeit individual variation in microbiomes between animals within the age categories was noted. Phylum distributions differed between the young/adolescent animals and the adult/aged animals at each of the time points, showing an enrichment of the phyla Spirochetes, Fusobacteria, and Bacteroidetes associated with periodontitis. Major differences in the top 50 operational taxonomic units (OTUs) were noted in the young and adolescent microbiomes during initiation and progression postligation compared to the adult and aged animals. The proportions of a large number of species in the top 50 OTUs were lower at baseline and in resolved disease microbiomes in the young samples, while profiles in adolescent animals were more consistent with the disease microbiomes. Microbiome profiles for resolution for adults and aged animals appeared more resilient and generally maintained a pattern similar to that of disease. Use of the model can expand our understanding of the crucial interactions of the oral microbiome and host responses in periodontitis.


Author(s):  
Albert Shieh ◽  
S Melanie Lee ◽  
Venu Lagishetty ◽  
Carter Gottleib ◽  
Jonathan P Jacobs ◽  
...  

Abstract Purpose To determine whether correcting vitamin D deficiency with cholecalciferol (vitamin D3, D3) or calcifediol (25-hydroxyvitamin D3, 25(OH)D3) changes gut microbiome composition. Methods 18 adults with vitamin D deficiency (25-hydroxyvitamin D [25(OH)D] &lt;20 ng/ml) received 60 mcg/day of D3 or 20 mcg/day of 25(OH)D3 for 8 weeks. Changes in serum 25(OH)D, 1,25-diydroxyvitamin D (1,25(OH)2D), and 24,25-dihydroxyvitamin D (24,25(OH)2D) were assessed. We characterized composition of the fecal microbiota using 16S rRNA gene sequencing, and examined changes in α-diversity (Chao 1, Faith’s Phylogenetic Diversity, Shannon Index), β-diversity (DEICODE), and genus-level abundances (DESeq2). Results Vitamin D3 and 25(OH)D3 groups were similar. After 8 weeks of vitamin D3, mean 25(OH)D and 24,25(OH)2D increased significantly, but 1,25(OH)2D did not (25(OH)D: 17.8 to 30.1 ng/ml [p=0.002]; 24,25(OH)2D: 1.1 to 2.7 ng/ml [p=0.003]; 1,25(OH)2D: 49.5 to 53.0 pg/ml [p=0.9]). After 8 weeks of 25(OH)D3, mean 25(OH)D, 24,25(OH)2D, and 1,25(OH)2D increased significantly (25(OH)D: 16.7 to 50.6 ng/ml [p&lt;0.0001]; 24,25(OH)2D: 1.3 to 6.2 ng/ml [p=0.0001]; 1,25(OH)2D: 56.5 to 74.2 pg/ml [p=0.05]). Fecal microbial α-diversity and β-diversity did not change with D3 or 25D3 supplementation. Mean relative abundance of Firmicutes increased and mean relative abundance of Bacterioidetes decreased from baseline to four weeks, but returned to baseline by study completion. DESeq2 analysis did not confirm any statistically significant taxonomic changes. Main conclusions In a small sample of healthy adults with vitamin D deficiency, restoration of vitamin D sufficiency with vitamin D3 or 25(OH)D3 did not lead to lasting changes in the fecal microbiota.


2020 ◽  
Vol 98 (6) ◽  
Author(s):  
Brooke N Smith ◽  
Stephen A Fleming ◽  
Mei Wang ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important disease, and the ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and antiviral properties. The objective of this study was to quantify the effects of ISF consumption on fecal microbiome characteristics at different timepoints across a disease challenge and determine whether any changes, if present, elude to potential biological mechanisms for previously observed performance benefits. In total, 96 weaned barrows were group-housed in a Biosafety Level-2 containment facility and allotted to one of three experimental treatments that were maintained throughout the study: noninfected pigs receiving an ISF-devoid control diet (NEG, n = 24) and infected pigs receiving either the control diet (POS, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-d adaptation, pigs were inoculated intranasally with either a sham-control (phosphate-buffered saline) or live PRRSV (1 × 105 median tissue culture infectious dose[TCID]50/mL, strain NADC20). Fecal samples were collected from 48 individual pigs at pre-infection (−2 d post-inoculation [DPI]), peak-infection (10 DPI), and post-infection (144 DPI) timepoints. Extracted DNA was used to quantify fecal microbiota profiles via 16S bacterial rRNA sequencing. Differences in bacterial communities among diet groups were evaluated with principal coordinate analysis and permutational multivariate analysis of variance using UniFrac distance matrices based on both unweighted and weighted UniFrac distances using QIIME 2. All other data were analyzed by one-way ANOVA performed on square root transformations using R. Across all timepoints, only a few differences were observed due to ISF alone mainly in lowly abundant genera. The most notable differences observed were decreased relative abundance of Actinobacteria at 144 DPI between noninfected and infected treatments (P &lt; 0.05), which is consistent with various dysbioses observed in other disease models. Our findings indicate that the differences present were mainly due to PRRSV-infection alone and not strongly influenced by diet, which implies that previously observed performance benefits conferred by dietary ISF are not likely due to the changes in microbiome composition.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gang Du ◽  
Wei Dong ◽  
Qing Yang ◽  
Xueying Yu ◽  
Jinghong Ma ◽  
...  

Emerging evidence indicates that gut dysbiosis may play a regulatory role in the onset and progression of Huntington’s disease (HD). However, any alterations in the fecal microbiome of HD patients and its relation to the host cytokine response remain unknown. The present study investigated alterations and host cytokine responses in patients with HD. We enrolled 33 HD patients and 33 sex- and age- matched healthy controls. Fecal microbiota communities were determined through 16S ribosomal DNA gene sequencing, from which we analyzed fecal microbial richness, evenness, structure, and differential abundance of individual taxa between HD patients and healthy controls. HD patients were evaluated for their clinical characteristics, and the relationships of fecal microbiota with these clinical characteristics were analyzed. Plasma concentrations of interferon gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor necrosis factor alpha were measured by Meso Scale Discovery (MSD) assays, and relationships between microbiota and cytokine levels were analyzed in the HD group. HD patients showed increased α-diversity (richness), β-diversity (structure), and altered relative abundances of several taxa compared to those in healthy controls. HD-associated clinical characteristics correlated with the abundances of components of fecal microbiota at the genus level. Genus Intestinimonas was correlated with total functional capacity scores and IL-4 levels. Our present study also revealed that genus Bilophila were negatively correlated with proinflammatory IL-6 levels. Taken together, our present study represents the first to demonstrate alterations in fecal microbiota and inflammatory cytokine responses in HD patients. Further elucidation of interactions between microbial and host immune responses may help to better understand the pathogenesis of HD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Feng ◽  
Hongxiang Ding ◽  
Jing Wang ◽  
Wei Xu ◽  
Yan Liu ◽  
...  

While the interactions of the gut microbiome and blood metabolome have been widely studied in polycystic ovary disease in women, follicular cysts of ewes have been scarcely investigated using these methods. In this study, the fecal microbiome and serum metabolome were used to compare between ewes diagnosed with ovarian cystic follicles and ewes with normal follicles, to investigate alterations of the fecal bacterial community composition and metabolic parameters in relation to follicular cystogenesis. Ewes from the same feeding and management system were diagnosed with a follicular cyst (n = 6) or confirmed to have normal follicles (n = 6) by using a B-mode ultrasound scanner. Blood serum and fresh fecal samples of all ewes were collected and analyzed. The α-diversity of fecal microbiome did not differ significantly between follicular cyst ewes and normal follicle ewes. Three genera (Bacteroides, Anaerosporobacter, and Angelakisella) were identified and their balance differentiated between follicular cyst and normal follicle ewes. Alterations of several serum metabolite concentrations, belonging to lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds, benzenoids, phenylpropanoids and polyketides, and organoheterocyclic compounds, were associated with the presence of a follicular cyst. Correlation analysis between fecal bacterial communities and serum metabolites indicated a positive correlation between Anaerosporobacter and several fatty acids, and a negative correlation between Bacteroides and L-proline. These observations provide new insights for the complex interactions of the gut microbiota and the host serum lipid profiles, and support gut microbiota as a potential strategy to treat and prevent follicular cysts in sheep.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1015-1015
Author(s):  
Julie Jeon ◽  
Xi Fang ◽  
Jeferson Lourenco ◽  
Srujana Rayalam ◽  
Michael Rothrock ◽  
...  

Abstract Objectives Microbial programming in early life is associated with gut health and overall well-being in adulthood. The establishment of the nascent gut microbiome is substantially influenced by both maternal nutrition and the native maternal microbiome. Pig is recognized as a valuable model in gastrointestinal track research due to its remarkable similarity to humans in gastrointestinal anatomy, physiology, biochemistry, immunology, and pathology. This study examined the characteristics of the gut microflora in the sow-piglet dyad. Methods Fecal samples were collected from sows (n = 6) and piglets (n = 24) at weaning. Bacterial DNA was isolated from the feces and the V3-V4 region of 16 s rRNA gene was amplified and sequenced using the Illumina Miseq platform and analyzed by QIIME pipeline. Results Sows had a twice higher abundance of Firmicutes than piglets (84.28% vs 40.19%, P &lt; 0.0001), although Firmicutes was the most abundant phyla in both sows and piglets. Instead, piglets had higher abundances of Bacteroidetes (36.41% vs 9.61%, P &lt; 0.0001) and Proteobacteria (11.31% vs 0.87%, P = 0.005) than sows. Early colonization of Proteobacteria has been suggested to be important for development of neonatal immunity. Firmicutes to Bacteroidetes ratio was higher in sows than in piglets (16.32 vs 1.36, P &lt; 0.0001), which is consistent with previous reports in humans. The five most abundant families in sows were Clostridiaceae (30.43%), Turicibacteraceae (17.13%), Ruminococcaceae (11.29%), Lactobacillaceae (8.27%), and Lachnospiraceae (4.99%), while those in piglets were Bacteroidaceae (23.96%), Lachnospiraceae (9.13%), Clostridiaceae (7.52%), Ruminococcaceae (6.80%), and Enterobacteriaceae (6.63%). Observed OTUs in sows were higher (P = 0.02) than those in piglets, suggesting that piglets at early stage of life have lower fecal α-diversity. Moreover, β-diversity was very different between sows and piglets (P = 0.01). Conclusions Sows and piglets showed distinctive pattern of fecal microflora, and piglets had fewer species numbers at weaning compared to that of sows. This finding will provide a valuable information for future transgenerational studies on the gut microbiome and its consequences for health using a sow-piglet dyad. Funding Sources Georgia Experimental Agricultural Station, UGA Faculty research grant, and Center for Chronic Disorders of Aging at the PCOM.


2020 ◽  
Vol 111 (4) ◽  
pp. 884-892
Author(s):  
M Isabel Ordiz ◽  
Stefan Janssen ◽  
Greg Humphrey ◽  
Gail Ackermann ◽  
Kevin Stephenson ◽  
...  

ABSTRACT Background Common bean and cowpea contain about 25% protein and 25% fiber, and are recommended as complementary foods in sub-Saharan Africa. Objective The objective of this study was to determine if a daily legume supplement given to Malawian infants aged 6 to 12 mo alters the 16S configuration of the fecal microbiota as read out by amplicon sequence variants (ASVs). Methods This study was conducted within the context of a randomized, double-blind, controlled clinical trial to assess whether cowpea or common bean supplementation reduced intestinal permeability or increased linear growth. There were 2 village clusters in which the study was conducted. Fresh stool collections were flash frozen from 236 infants at ≤6 time points. The stools were sequenced using Earth Microbiome project protocols and data were processed using Qiime and Qiita, open-source, validated software packages. α-diversity was measured using the Faith's test. The 16S configuration was characterized by determining the weighted UniFrac distances of the ASVs and comparing them using permutational multivariate ANOVA. Results Among the 1249 samples analyzed, the α-diversity of the fecal microbiome was unchanged among subjects after initiation of legume supplementation. Neither cowpea nor common bean altered the overall 16S configuration at any age. The 16S configuration differed between children with adequate and poor linear growth aged from 6 to 9 mo, but no specific ASVs differed in relative abundance. The 16S configuration differed between children with normal and abnormal intestinal permeability at 9 mo, but no specific ASVs differed in relative abundance. Among categorical characteristics of the population associated with different 16S configurations, village cluster was most pronounced. Conclusion Legume supplementation in breastfed, rural African infants did not affect the structure of the gut microbial communities until the children were aged 9 mo. This trial was registered at clinicaltrials.gov as NCT02472262.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elizabeth Half ◽  
Nirit Keren ◽  
Leah Reshef ◽  
Tatiana Dorfman ◽  
Ishai Lachter ◽  
...  

AbstractPancreatic cancer (PC) is a leading cause of cancer-related death in developed countries, and since most patients have incurable disease at the time of diagnosis, developing a screening method for early detection is of high priority. Due to its metabolic importance, alterations in pancreatic functions may affect the composition of the gut microbiota, potentially yielding biomarkers for PC. However, the usefulness of these biomarkers may be limited if they are specific for advanced stages of disease, which may involve comorbidities such as biliary obstruction or diabetes. In this study we analyzed the fecal microbiota of 30 patients with pancreatic adenocarcinoma, 6 patients with pre-cancerous lesions, 13 healthy subjects and 16 with non-alcoholic fatty liver disease, using amplicon sequencing of the bacterial 16S rRNA gene. Fourteen bacterial features discriminated between PC and controls, and several were shared with findings from a recent Chinese cohort. A Random Forest model based on the microbiota classified PC and control samples with an AUC of 82.5%. However, inter-subject variability was high, and only a small part of the PC-associated microbial signals were also observed in patients with pre-cancerous pancreatic lesions, implying that microbiome-based early detection of such lesions will be challenging.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Christina Wimmer-Scherr ◽  
Bernard Taminiau ◽  
Benoît Renaud ◽  
Gunther van Loon ◽  
Katrien Palmers ◽  
...  

Equine atypical myopathy (AM) is caused by hypoglycin A (HGA) and methylenecyclopropylglycine (MCPG) intoxication resulting from the ingestion of seeds or seedlings of some Acer tree species. Interestingly, not all horses pasturing in the same toxic environment develop signs of the disease. In other species, it has been shown that the intestinal microbiota has an impact on digestion, metabolism, immune stimulation and protection from disease. The objective of this study was to characterize and compare fecal microbiota of horses suffering from AM and healthy co-grazers. Furthermore, potential differences in fecal microbiota regarding the outcome of diseased animals were assessed. This prospective observational study included 59 horses with AM (29 survivors and 30 non-survivors) referred to three Belgian equine hospitals and 26 clinically healthy co-grazers simultaneously sharing contaminated pastures during spring and autumn outbreak periods. Fresh fecal samples (rectal or within 30 min of defecation) were obtained from all horses and bacterial taxonomy profiling obtained by 16S amplicon sequencing was used to identify differentially distributed bacterial taxa between AM-affected horses and healthy co-grazers. Fecal microbial diversity and evenness were significantly (p < 0.001) higher in AM-affected horses as compared with their non-affected co-grazers. The relative abundance of families Ruminococcaceae, Christensenellaceae and Akkermansiaceae were higher (p ≤ 0.001) whereas those of the Lachnospiraceae (p = 0.0053), Bacteroidales (p < 0.0001) and Clostridiales (p = 0.0402) were lower in horses with AM, especially in those with a poor prognosis. While significant shifts were observed, it is still unclear whether they result from the disease or might be involved in the onset of disease pathogenesis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Brian Piccolo ◽  
Sridevi Krishnan ◽  
Kartik Shankar ◽  
Sree Chintapalli ◽  
Kikumi Ono-Moore ◽  
...  

Abstract Objectives To determine whether a high quality diet based on the 2010 Dietary Guidelines of America (DGA) alters the composition of the fecal microbiome in individuals at risk for cardiometabolic disease, compared to a diet based on a typical American diet (TAD). Methods A total of 52 overweight and obese women were enrolled in a randomized, double-blind, controlled feeding trial. Women were randomly assigned to the DGA or TAD group (n = 28 DGA and 24 TAD). Diets matched each participant's estimated energy requirement and subjects remained weight-stable. The DGA diet was based on the 2010 DGA food-group recommendations, whereas the TAD diet was based on the average adult intake patterns from the NHANES 2009–2010 survey. Participants provided a stool sample 1-week prior to intervention (W0), within the second week of diet intervention (W2), and at the final week of intervention (W8). Microbial profiles were assessed using 16S rRNA amplicon sequencing and expressed as median % relative abundance. Data analyses were performed using standardized pipelines (QIIME 1.9 and R packages). False Discovery Rate (FDR) was set at 0.2. Results No differences were found in α- and β-diversity indices at the operational taxomonic unit (OTU) level by diet assignment at W0, and no taxa were differentially abundant at FDR < 0.2. Similarly, α- and β-diversity indices (OTU level) were not altered by diet within W2 or W8. A single OTU within the Ruminococcus genera was higher in TAD at both W2 (TAD = 0.014%; DGA = 0.00%) and W8 (TAD = 0.017%; DGA = 0.00%; FDR < 0.05), and the Adlercreutzia genera from the Actinobacteria phyla was also higher in TAD at both W2 (TAD = 0.027%; DGA = 0.001%) and W8 (TAD = 0.022%; DGA = 0.002%). No within-diet differences between W0 and W2, and W0 and W8 were observed in any α- and β-diversity indices tested. When adjusting for W0 relative abundances, 10 OTUs were altered by diet at W2 and 39 OTUs were altered at W8. Conclusions A weight-maintaining diet based on the 2010 DGA minimally differed in the fecal microbiota compared to a weight-maintaining typical American diet. Results herein suggests differences in food-based dietary patterns does not have a large effect on the composition of the fecal microbiota in humans. Funding Sources Supported by National Dairy Council; Campbell Soup Co.; USDA-ARS Projects 2032-51530-022-00D and 6026-51000-010-05S.


Sign in / Sign up

Export Citation Format

Share Document