scholarly journals Longitudinal whole-genome based comparison of carriage and infection associated Staphylococcus aureus in northern Australian dialysis clinics

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245790
Author(s):  
Deborah C. Holt ◽  
Tegan M. Harris ◽  
Jaquelyne T. Hughes ◽  
Rachael Lilliebridge ◽  
David Croker ◽  
...  

Background The study objective was to reveal reservoirs potentially leading to Staphylococcus aureus infections in haemodialysis clinic clients in the tropical north of the Australian Northern Territory (NT). This client population are primarily Aboriginal Australians who have a greater burden of ill health than other Australians. Reservoir identification will enhance infection control in this client group, including informing potential S. aureus decolonisation strategies. Methods and findings The study participants were 83 clients of four haemodialysis clinics in the Darwin region of the NT, and 46 clinical staff and researchers who had contact with the clinic clients. The study design was longitudinal, encompassing swabbing of anatomical sites at two month intervals to yield carriage isolates, and also progressive collection of infection isolates. Swab sampling was performed for all participants, and infection isolates collected for dialysis clients only. Analysis was based on the comparison of 139 carriage isolates and 27 infection isolates using whole genome sequencing. Genome comparisons were based on of 20,651 genome-wide orthologous SNPs, presence/absence of the mecA and pvl genes, and inferred multilocus sequence type and clonal complex. Pairs of genomes meeting the definition of “not discriminated” were classed as defining potential transmission events. The primary outcome was instances of potential transmission between a carriage site other than a skin lesion and an infection site, in the same individual. Three such instances were identified. Two involved ST762 (CC1) PVL- MRSA, and one instance ST121 PVL+ MSSA. Three additional instances were identified where the carriage strains were derived from skin lesions. Also identified were six instances of potential transmission of a carriage strains between participants, including transmission of strains between dialysis clients and staff/researchers, and one potential transmission of a clinical strain between participants. There were frequent occurrences of longitudinal persistence of carriage strains in individual participants, and two examples of the same strain causing infection in the same participants at different times. Strains associated with infections and skin lesions were enriched for PVL and mecA in comparison to strains associated with long term carriage. Conclusions This study indicated that strains differ with respect to propensity to stably colonise sites such as the nose, and cause skin infections. PVL+ strains were associated with infection and skin lesions and were almost absent from the carriage sites. PVL- MRSA (mainly CC1) strains were associated with infection and also with potential transmission events involving carriage sites, while PVL- MSSA were frequently observed to stably colonise individuals without causing infection, and to be rarely transmitted. Current clinical guidelines for dialysis patients suggest MRSA decolonisation. Implementation in this client group may impact infections by PVL- MRSA, but may have little effect on infection by PVL+ strains. In this study, the PVL+ strains were predominant causes of infection but rarely colonised typical carriage sites such as the nose, and in the case of ST121, were MSSA. The important reservoirs for infection by PVL+ strains appeared to be prior infections.

2015 ◽  
Vol 36 (7) ◽  
pp. 777-785 ◽  
Author(s):  
Taj Azarian ◽  
Robert L. Cook ◽  
Judith A. Johnson ◽  
Nilmarie Guzman ◽  
Yvette S. McCarter ◽  
...  

BACKGROUNDInfants in the neonatal intensive care unit (NICU) are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Outbreaks may be difficult to identify due in part to limitations in current molecular genotyping available in clinical practice. Comparison of genome-wide single nucleotide polymorphisms (SNPs) may identify epidemiologically distinct isolates among a population sample that appears homogenous when evaluated using conventional typing methods.OBJECTIVETo investigate a putative MRSA outbreak in a NICU utilizing whole-genome sequencing and phylogenetic analysis to identify recent transmission events.DESIGNClinical and surveillance specimens collected during clinical care and outbreak investigation.PATIENTSA total of 17 neonates hospitalized in a 43-bed level III NICU in northeastern Florida from December 2010 to October 2011 were included in this study.METHODSWe assessed epidemiological data in conjunction with 4 typing methods: antibiograms, PFGE, spa types, and phylogenetic analysis of genome-wide SNPs.RESULTSAmong the 17 type USA300 isolates, 4 different spa types were identified using pulsed-field gel electrophoresis. Phylogenetic analysis identified 5 infants as belonging to 2 clusters of epidemiologically linked cases and excluded 10 unlinked cases from putative transmission events. The availability of these results during the initial investigation would have improved infection control interventions.CONCLUSIONWhole-genome sequencing and phylogenetic analysis are invaluable tools for epidemic investigation; they identify transmission events and exclude cases mistakenly implicated by traditional typing methods. When routinely applied to surveillance and investigation in the clinical setting, this approach may provide actionable intelligence for measured, appropriate, and effective interventions.Infect. Control Hosp. Epidemiol. 2015;36(7):777–785


Author(s):  
Sadaf Razzak

Background: Penicillin resistance among Staphylococcus aureus commonly encountered in the hospital admitted patients. Detection of antibiotic sensitivity in hospital acquired methicillin resistant Staphylococcus aureus infections is important as it has great influence on empiric antibiotic prescription, successful control of infection, prevention of spread of disease and successful patient management. This study aimed to detect the frequency of HA-MRSA from pus samples in a hospital setup with assessment of their antibiotic susceptibility patterns. Method: A cross-sectional study was conducted in the Microbiology department of Basic Medical Science Institute, JPMC, Karachi from January 2015 until December 2015. Pus samples from surgical site wounds, skin lesions, abscesses from surgical and medical wards and ICUs were collected. According to the standards given by CLSI 2014, MRSA testing of the samples was done and susceptibility testing for antibiotics was performed. Inducible clindamycin resistance was detected by D-Test; E Test. determined MIC (minimum inhibitory concentration) for vancomycin. The data was analyzed by SPSS version 16. Result: Out of the 149 MRSA identified from the pus samples, 106 (71.14%) samples were HA-MRSA. The number of male patients was more than the female patients (67.66%). Out of the 106 HA-MRSA, 91(85.8%) were sensitive to TMP/SMX, 98(92.5%) to rifampicin, 12(11.6%) to gentamicin, 85(80.2%) to tetracycline, 11(10.4%) to erythromycin, 37(34.9%) to clindamycin, 20(18.9%) to ciprofloxacin, 106 (100%) to both vancomycin and linezolid. Conclusion: HA-MRSA showed sensitivity to TMP/SMX and vancomycin making them effective drugs to use in combination in superficial infections. The drug linezolid also showed 100% sensitivity.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andreas Papoutsis ◽  
Thomas Borody ◽  
Siba Dolai ◽  
Jordan Daniels ◽  
Skylar Steinberg ◽  
...  

Abstract Background SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment next-generation sequencing (NGS) from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. Results Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. Conclusion These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal–oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication. Trial registration ClinicalTrials.gov, NCT04359836, Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359836?term=NCT04359836&draw=2&rank=1).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syed A. K. Shifat Ahmed ◽  
Michelle Rudden ◽  
Sabrina M. Elias ◽  
Thomas J. Smyth ◽  
Roger Marchant ◽  
...  

AbstractPseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Beverly Egyir ◽  
Jeannette Bentum ◽  
Naiki Attram ◽  
Anne Fox ◽  
Noah Obeng-Nkrumah ◽  
...  

Staphylococcus aureus (S. aureus) is a common cause of surgical site infections (SSIs) globally. Data on the occurrence of methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) among patients with surgical site infections (SSIs) in sub-Saharan African are scarce. We characterized S. aureus from SSIs in Ghana using molecular methods and antimicrobial susceptibility testing (AST). Wound swabs or aspirate samples were collected from subjects with SSIs. S. aureus was identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS); AST was performed by Kirby-Bauer disk diffusion, and results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Detection of spa, mecA, and pvl genes was performed by polymerase chain reaction (PCR). Whole-genome sequencing (WGS) was done using the Illumina MiSeq platform. Samples were collected from 112 subjects, with 13 S. aureus isolates recovered. Of these, 92% were sensitive to co-trimoxazole, 77% to clindamycin, and 54% to erythromycin. Multi-drug resistance was detected in 5 (38%) isolates. The four mecA gene-positive MRSA isolates detected belonged to ST152 (n = 3) and ST5 (n = 1). In total, 62% of the isolates were positive for the Panton-Valentine leukocidin (pvl) toxin gene. This study reports, for the first time, a pvl-positive ST152-t355 MRSA clone from SSIs in Ghana. The occurrence of multi-drug-resistant S. aureus epidemic clones suggests that continuous surveillance is required to monitor the spread and resistance trends of S. aureus in hospital settings in the country.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 430
Author(s):  
Wichai Santimaleeworagun ◽  
Praewdow Preechachuawong ◽  
Wandee Samret ◽  
Tossawan Jitwasinkul

Methicillin-resistant Staphylococcus aureus (MRSA) is mostly found in Thailand in the hospital as a nosocomial pathogen. This study aimed to report the genetic characterization of a clinical community-acquired MRSA (CA-MRSA) isolate collected from hospitalized patients in Thailand. Among 26 MRSA isolates, S. aureus no. S17 preliminarily displayed the presence of a staphylococcal cassette chromosome mec (SCCmec) type IV pattern. The bacterial genomic DNA was subjected to whole-genome sequencing. Panton–Valentine leukocidin (PVL) production, virulence toxins, and antibiotic resistance genes were identified, and multi-locus sequence typing (MLST) and spa typing were performed. The strain was matched by sequence to MLST type 2885 and spa type t13880. This strain carried type IV SCCmec with no PVL production. Five acquired antimicrobial resistance genes, namely blaZ, mecA, Inu(A), tet(K), and dfrG conferring resistance to β-lactams, lincosamides, tetracycline, and trimethoprim, were identified. The detected toxins were exfoliative toxin A, gamma-hemolysin, leukocidin D, and leukocidin E. Moreover, there were differences in seven regions in CR-MRSA no. S17 compared to CA-MRSA type 300. In summary, we have reported the ST2885-SCCmec IV CA-MRSA clinical strain in Thailand for the first time, highlighting the problem of methicillin resistance in community settings and the consideration in choosing appropriate antibiotic therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binisha H. Mishra ◽  
Pashupati P. Mishra ◽  
Emma Raitoharju ◽  
Saara Marttila ◽  
Nina Mononen ◽  
...  

AbstractWe analysed whole blood genome-wide expression data to identify gene co-expression modules shared by early traits of osteoporosis and atherosclerosis. Gene expression was profiled for the Young Finns Study participants. Bone mineral density and content were measured as early traits of osteoporosis. Carotid and bulbus intima media thickness were measured as early traits of atherosclerosis. Joint association of the modules, identified with weighted co-expression analysis, with early traits of the diseases was tested with multivariate analysis. Among the six modules significantly correlated with early traits of both the diseases, two had significant (adjusted p-values (p.adj) < 0.05) and another two had suggestively significant (p.adj < 0.25) joint association with the two diseases after adjusting for age, sex, body mass index, smoking habit, alcohol consumption, and physical activity. The three most significant member genes from the significant modules were NOSIP, GXYLT2, and TRIM63 (p.adj ≤ 0.18). Genes in the modules were enriched with biological processes that have separately been found to be involved in either bone metabolism or atherosclerosis. The gene modules and their most significant member genes identified in this study support the osteoporosis-atherosclerosis comorbidity hypothesis and can provide new joint biomarkers for both diseases and their dual prevention.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Kingshuk Mukherjee ◽  
Massimiliano Rossi ◽  
Leena Salmela ◽  
Christina Boucher

AbstractGenome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper.


Sign in / Sign up

Export Citation Format

Share Document