scholarly journals FGF/ERK signaling pathway: how it operates in mammalian preimplantation embryos and embryo-derived stem cells

2019 ◽  
Vol 63 (3-4-5) ◽  
pp. 171-186 ◽  
Author(s):  
Anna Soszyńska ◽  
Katarzyna Klimczewska ◽  
Aneta Suwińska

The integration of extracellular signals and lineage-specific transcription factors allows cells to react flexibly to their environment, thus endowing the mammalian embryo with the capacity of regulative development. The combination of genetic and pharmacological tools allowing disruption of the fibroblast growth factor / extracellular signal-regulated kinase (FGF/ERK) pathway, together with animal models expressing lineage-specific reporters provided new insights into the role of this signaling cascade during mammalian development, as well as in embryo-derived stem cells. Here, we combine current knowledge acquired from different mammalian models to consider the universality of this cascade in specifying cellular fate across mammalian species.

2019 ◽  
Vol 20 (12) ◽  
pp. 2899 ◽  
Author(s):  
Dong Kyung Sung ◽  
Se In Sung ◽  
So Yoon Ahn ◽  
Yun Sil Chang ◽  
Won Soon Park

We investigated the role of protease-activated receptor (PAR)-mediated signaling pathways in the biogenesis of human umbilical cord blood-derived mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) and the enrichment of their cargo content after thrombin preconditioning. Immunoblot analyses showed that MSCs expressed two PAR subtypes: PAR-1 and PAR-3. Thrombin preconditioning significantly accelerated MSC-derived EV biogenesis more than five-fold and enriched their cargo contents by more than two-fold via activation of Rab5, early endosomal antigen (EEA)-1, and the extracellular signal regulated kinase (ERK)1/2 and AKT signaling pathways. Blockage of PAR-1 with the PAR-1-specific antagonist, SCH79797, significantly suppressed the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways and subsequently increased EV production and enriched EV cargo contents. Combined blockage of PAR-1 and PAR-3 further and significantly inhibited the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways, accelerated EV production, and enriched EV cargo contents. In summary, thrombin preconditioning boosted the biogenesis of MSC-derived EVs and enriched their cargo contents largely via PAR-1-mediated pathways and partly via PAR-1-independent, PAR-3-mediated activation of Rab5, EEA-1, and the ERK1/2 and AKT signaling pathways.


2019 ◽  
Vol 20 (7) ◽  
pp. 1626 ◽  
Author(s):  
Marta Jiménez-Martínez ◽  
Konstantinos Stamatakis ◽  
Manuel Fresno

Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.


2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


2005 ◽  
Vol 68 (2) ◽  
pp. 421-429 ◽  
Author(s):  
Vincent Pascoli ◽  
Emmanuel Valjent ◽  
Anne-Gaëlle Corbillé ◽  
Jean-Christophe Corvol ◽  
Jean-Pol Tassin ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 439 ◽  
Author(s):  
Vanessa Delcroix ◽  
Olivier Mauduit ◽  
Nolwenn Tessier ◽  
Anaïs Montillaud ◽  
Tom Lesluyes ◽  
...  

By inhibiting Insulin-Like Growth Factor-1-Receptor (IGF-1R) signaling, Klotho (KL) acts like an aging- and tumor-suppressor. We investigated whether KL impacts the aggressiveness of liposarcomas, in which IGF-1R signaling is frequently upregulated. Indeed, we observed that a higher KL expression in liposarcomas is associated with a better outcome for patients. Moreover, KL is downregulated in dedifferentiated liposarcomas (DDLPS) compared to well-differentiated tumors and adipose tissue. Because DDLPS are high-grade tumors associated with poor prognosis, we examined the potential of KL as a tool for overcoming therapy resistance. First, we confirmed the attenuation of IGF-1-induced calcium (Ca2+)-response and Extracellular signal-Regulated Kinase 1/2 (ERK1/2) phosphorylation in KL-overexpressing human DDLPS cells. KL overexpression also reduced cell proliferation, clonogenicity, and increased apoptosis induced by gemcitabine, thapsigargin, and ABT-737, all of which are counteracted by IGF-1R-dependent signaling and activate Ca2+-dependent endoplasmic reticulum (ER) stress. Then, we monitored cell death and cytosolic Ca2+-responses and demonstrated that KL increases the reticular Ca2+-leakage by maintaining TRPC6 at the ER and opening the translocon. Only the latter is necessary for sensitizing DDLPS cells to reticular stressors. This was associated with ERK1/2 inhibition and could be mimicked with IGF-1R or MEK inhibitors. These observations provide a new therapeutic strategy in the management of DDLPS.


Sign in / Sign up

Export Citation Format

Share Document