scholarly journals A Review on Poly-Lactic-Co-Glycolic Acid as a Unique Carrier for Controlled and Targeted Delivery Drugs

2021 ◽  
Vol 10 (27) ◽  
pp. 2034-2041
Author(s):  
Prakash Raj K. ◽  
Kathiresan K. ◽  
Pandian P.

In regulated and targeted drug distribution, biodegradable polymers have played a significant portion. Poly-lactic-co-glycolic acid (PLGA) has been an important desirable polymer in tissue engineering to meet a new drug delivery system. PLGAs, show a broad spectrum of erosion cycles and have tuning mechanical characteristics. Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. PLGA has been extensively studied, in particular, in the production of equipment for controlled distribution in industrial and research applications of small molecules, protein, and other macromolecules. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. PLGA has many properties such as controlled and sustained release, low cancerinducing, long-standing biomedical applications, biocompatibility with tissues and cells, and prolonged residence time. It is otherwise called as 'Smart Polymer' because improvements are fragile to conduct PLGA that has been widely examined in industrial and academic applications to produce instruments for the target delivery of tiny molecular drugs, proteins, and other large molecules. An introduction about the chemistry, physicochemical properties, manufacturing techniques of the devices, toxicity, and the reason influencing their decrease and release of the drug was given in the present study. Mathematical modelling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. Mathematical modelling applied against the target from PLGA – the devices has been clarified by discussing in the review, by explaining the underlying mathematical models and how this is used. KEY WORDS Biodegradable Polymers, PLGA, Biodegradability, Macromolecules

2021 ◽  
Vol 9 (5) ◽  
pp. 334-345
Author(s):  
N. Surya ◽  
S. Bhattacharyya

Polymers have become an integral part of novel drug delivery system. One such successful biodegradable polymer is poly lactic-co-glycolic acid (PLGA) which consists of polyesters of lactic acid and glycolic acid. It is one of the FDA-approved biodegradable polymers which is extensively used for therapeutic purposes in recent times.The aim. To illuminate researchers on the chemistry, novel properties and applications of PLGA in pharmaceutical fields.Materials and methods. Various internet sources like Science Direct, Scopus, Web of Science, PubMed and google scholar were used as the data source. The key words search was carried out for the following words and combinations: PLGA, Novel drug delivery, PLGA Nano particles, biomedical applications of PLGA.Results. Pharmaceutical and biomedical industries are flooded with the use of synthetic and natural polymers. The mechanical and viscoelastic properties of the polymers make them suitable for the temporal and spatial delivery of therapeutic agents for an extended period. Employment of copolymerization techniques lead to the modification of water solubility of the polymers and make them suitable for various applications of drug delivery systems. Biodegradable polymers due to their biocompatibility and biodegradable property have attracted their use in novel drug delivery systems. PLGA is one of them. PLGA is versatile as it can be fabricated into any size, shape, and can be used to encapsulate small molecules, tissue engineering, and bone repair, etc.Conclusion. The sensitivity and biodegradability of PLGA makes it a smart polymer for targeted and sustained delivery of drugs and in various biomedical applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1413
Author(s):  
Anne Yagolovich ◽  
Andrey Kuskov ◽  
Pavel Kulikov ◽  
Leily Kurbanova ◽  
Dmitry Bagrov ◽  
...  

Nanoparticles based on the biocompatible amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) derivatives are promising for drug delivery. Amph-PVPs self-aggregate in aqueous solutions with the formation of micellar nanoscaled structures. Amph-PVP nanoparticles are able to immobilize therapeutic molecules under mild conditions. As is well known, many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. The aim of the study was to fabricate Amph-PVP-based nanoparticles covalently conjugated with antitumor DR5-specific TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) variant DR5-B and to evaluate their in vitro cytotoxicity in 3D tumor spheroids. The Amph-PVP nanoparticles were obtained from a 1:1 mixture of unmodified and maleimide-modified polymeric chains, while DR5-B protein was modified by cysteine residue at the N-end for covalent conjugation with Amph-PVP. The nanoparticles were found to enhance cytotoxicity effects compared to those of free DR5-B in both 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. The cytotoxicity of the nanoparticles was investigated in human cell lines, namely breast adenocarcinoma MCF-7 and colorectal carcinomas HCT116 and HT29. Notably, DR5-B conjugation with Amph-PVP nanoparticles sensitized resistant multicellular tumor spheroids from MCF-7 and HT29 cells. Taking into account the nanoparticles loading ability with a wide range of low-molecular-weight antitumor chemotherapeutics into hydrophobic core and feasibility of conjugation with hydrophilic therapeutic molecules by click chemistry, we suggest further development to obtain a versatile system for targeted drug delivery into tumor cells.


2018 ◽  
Vol 19 (9) ◽  
pp. 2830 ◽  
Author(s):  
Cheng-Han Tsai ◽  
Peng-Yuan Wang ◽  
I-Chan Lin ◽  
Hu Huang ◽  
Guei-Sheung Liu ◽  
...  

Ocular drug delivery has been a major challenge for clinical pharmacologists and biomaterial scientists due to intricate and unique anatomical and physiological barriers in the eye. The critical requirement varies from anterior and posterior ocular segments from a drug delivery perspective. Recently, many new drugs with special formulations have been introduced for targeted delivery with modified methods and routes of drug administration to improve drug delivery efficacy. Current developments in nanoformulations of drug carrier systems have become a promising attribute to enhance drug retention/permeation and prolong drug release in ocular tissue. Biodegradable polymers have been explored as the base polymers to prepare nanocarriers for encasing existing drugs to enhance the therapeutic effect with better tissue adherence, prolonged drug action, improved bioavailability, decreased toxicity, and targeted delivery in eye. In this review, we summarized recent studies on sustained ocular drug/gene delivery and emphasized on the nanocarriers made by biodegradable polymers such as liposome, poly lactic-co-glycolic acid (PLGA), chitosan, and gelatin. Moreover, we discussed the bio-distribution of these nanocarriers in the ocular tissue and their therapeutic applications in various ocular diseases.


2017 ◽  
Vol 3 (2) ◽  
pp. 691-694
Author(s):  
Michael Teske ◽  
Katharina Wulf ◽  
Daniela Arbeiter ◽  
Thomas Eickner ◽  
Klaus-Peter Schmitz ◽  
...  

AbstractIn the last decades PLLA-based copolymers have been among the most attractive polymeric candidates used to fabricate devices for drug delivery and stent applications in the cardiovascular system. PLLA is biocompatible and biodegradable, exhibits a wide range of erosion times and has tunable mechanical properties. Therefore, the influence of drug incorporation on the physicochemical properties of biodegradable PLLA copolymers were examined in this study using Fluorescein diacetate (FDAc) and Paclitaxel (PTX). A percental amount of these drugs (17.5 %) were incorporated into poly(L-lactide-co-glycolide) (P(LLA-co-GA)) and poly(L-lactide-co-ε-caprolactone) (P(LLA-co-CL)) made via spray coating. The polymer surface properties, such as surface morphology and hydrophilicity were also examined and remained rather unchanged for both polymers after drug loadings. Furthermore, also the contact angle changed rather marginally. However, both polymers have already different thermal properties without the drug embedded, especially the glass transition temperature (TG) is for P(LLA-co-CL) under 37°C and for P(LLA-co-GA) considerable above with around 66°C. An rather high increase in TG achieved by addition of FDAc or PTX, crucial influences the drug release profiles for P(LLA-co-CL) in contrast to P(LLA-co-GA). Besides these results preliminarily experiments of additional coupling of other drugs on the polymer surface were performed and we obtained an influence of FDAc or PTX. The drug incorporation and physicochemical characterization data obtained in this study is relevant in optimizing the incorporation or coupling of further drugs on the polymer surface and delivery properties of these potential multi drug delivery coatings.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 5-22
Author(s):  
A.P Gadad ◽  
◽  
G Vannuruswamy ◽  
Chandra P. Sharath ◽  
P.M. Dandagi ◽  
...  

In past decades poly lactic-co-glycolic acid (PLGA) has been one of the most attractive polymeric candidates used to fabricate devices for diagnostics and other applications of clinical and basic science research, including vaccine, cancer, cardiovascular disease, and tissue engineering. In addition, PLGA and its co-polymers are important in designing nanoparticles with desired characteristics such as biocompatibility, biodegradation, particle size, surface properties, drug release and target ability and exhibit a wide range of erosion times. PLGA has been approved by the US FDA for use in drug delivery. This article represents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications, and factors affecting their degradation and drug release. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices.


2020 ◽  
Vol 19 (4) ◽  
pp. 234-242
Author(s):  
L. D. Koleva ◽  
F. I. Ataullakhanov ◽  
E. I. Sinauridze

Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Erythrocytes can act as carriers with the gradual release of a pharmacological agent, as bioreactors with encapsulated enzymes, or as a tool for targeted delivery of drugs to target organs especially tissue macrophages, liver and spleen. To date, red blood cells have been studied as carriers for a wide range of drug compounds, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc. The review is devoted to the advantages of erythrocytes as carriers for the delivery of drugs loaded into the erythrocyte, or related to its surface, and defines the main directions of research on erythrocytes carriers of biologically active substances. Particular attention is paid to in vivo studies that reveal the potential of carrier erythrocytes for clinical use.


2021 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Izabela Kościk ◽  
Daniel Jankowski ◽  
Anna Jagusiak

Based on statistics from the National Cancer Institute in the US, the rate of new cases of cancer is 442.4 per 100,000 men and women per year, and more than one-third do not survive the disease. Cancer diagnosis and treatment are the most important challenges in modern medicine. The majority of cancer cases are diagnosed at an early stage. However, the possibility of simultaneous diagnosis and application of therapy (theranostics) will allow for acceleration and effectiveness of treatment. Conventional chemotherapy is not effective in reducing the chemoresistance and progression of various types of cancer. In addition, it causes side effects, which are mainly a result of incorrect drug distribution. Hence, new therapies are being explored as well as new drug delivery strategies. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to cancer cells. This review looks at the latest advances in drug delivery-based diagnosis and therapy. Drug delivery nanosystems made of various types of carbon (graphene, fullerenes, and carbon nanotubes) are discussed. Their chemical properties, advantages, and disadvantages are explored, and these systems are compared with each other.


Author(s):  
Rohit Karnik ◽  
Frank X. Gu ◽  
Suman Bose ◽  
Pamela Basto ◽  
Christopher Cannizzaro ◽  
...  

A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the nanoparticle physicochemical properties that affect their biodistribution, drug release, and efficacy. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with non-solvents. Inadequate control over this mixing process is a source of variability in the synthesis of these nanoparticles by nanoprecipitation. We demonstrate that rapid and tunable mixing through hydrodynamic flow focusing in a microfluidic device can be used to control nanoprecipitation of poly(lactic-co-glycolic acid)-bpoly(ethylene glycol) (PLGA-PEG) diblock copolymers as a model polymeric biomaterial for drug delivery.


Author(s):  
Manju Rawat ◽  
Swarnlata Saraf

Currently, drug delivery technologies for protein and peptide delivery mainly rely on biodegradable polymers. However, protein stability during release from these systems can be critical due to physical and chemical instabilities. Lipospheres are solid microparticles composed of fat core stabilized by phospholipids layer represent an alternative carrier for the delivery of highly challenging, labile and unstable  substances. This review highlights various aspects of lipospheres like physicochemical characteristics and stability for better clinical utility with a wider spectrum of proteins and peptides.


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Sign in / Sign up

Export Citation Format

Share Document