scholarly journals Haemocompatibility Of Non-Functionalized And Plasmachemical Functionalized Detonation Nanodiamond Particles

2015 ◽  
Vol 60 (3) ◽  
pp. 2183-2189 ◽  
Author(s):  
K. Mitura ◽  
M. Jedrzejewska-Szczerska ◽  
P. Ceynowa ◽  
M. Dudek ◽  
M. Cicha ◽  
...  

AbstractThe purpose of this paper is to present the innovative design of microwave plasma system for modification of detonation nanodiamond particles (DNP) using a special rotating drum placed inside the reactor. Nanodiamond particles manufactured by detonation method reveal the biological activity depending on surface functionalization. Plasmachemical modification of detonation nanodiamond particles gives the possibility of controlling surface of nanodiamonds particles in biological tests. In this paper we would like to compare detonation nanodiamond (the grain sizes from 2 to 5 nm) with modified detonation nanodiamond in rotary reactor chamber, by microwave plasma activated chemical vapour deposition (MW PACVD) method in materials research (Raman and FT-IR spectroscopy) and in vitro examinations with full of human blood. The results indicate haemocompatibility of non-modified detonation nanodiamond and modified nanodiamond by MW PACVD method in rotary reactor chamber (modifiedND-3) and the presence of haemolysis in commercial detonation nanodiamond.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Antonia Terriza ◽  
Jose I. Vilches-Pérez ◽  
Emilio de la Orden ◽  
Francisco Yubero ◽  
Juan L. Gonzalez-Caballero ◽  
...  

The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2nanolayer were identified in our model. The novedous SiO2deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.


2021 ◽  
Vol 22 (22) ◽  
pp. 12139
Author(s):  
Corina Popovici ◽  
Cristina-Maria Pavel ◽  
Valeriu Sunel ◽  
Corina Cheptea ◽  
Dan Gheorghe Dimitriu ◽  
...  

Original results are presented in the field of research that addresses the extension of the reaction of residue of acyl-thiosemicarbazide fixation on the structure of 5-nitrobenzimidazole by a sulphonic group. The aim of the study is the increase of new thiosemicarbazide derivatives’ applicative potential in the field of biochemistry, with a wide range of medical applications. The newly obtained compounds were characterized by using elemental analysis and spectral analysis (FT-IR and 1H NMR). A study regarding the optimization of the chemical reactions was made. The performed in vitro biological tests confirmed the tuberculostatic activity of three newly obtained compounds against Mycobacterium tuberculosis.


Author(s):  
Bipul Nath ◽  
Santimoni Saikia

In the present investigation, sodium alginate based multiparticulate system overcoated with time and pH dependent polymer was studied in the form of oral pulsatile system to achieve pulsatile with sustained release of aceclofenac for chronotherapy of rheumatoid arthritis seven batches of micro beads with varying concentration of sodium alginate (2-5 %) were prepared by ionotropic-gelation method using CaCl2 as cross-linking agent. The prepared Ca-alginate beads were coated with 5% Eudragit L100 and filled into pulsatile capsule with varying proportion of plugging materials. Drug loaded microbeads were investigated for physicochemical properties and drug release characteristics. The mean particle sizes of drug-loaded microbeads were found to be in the range 596±1.1 to 860 ± 1.2 micron and %DEE in the range of 65-85%. FT-IR and DSC studies revealed the absence of drug polymer interactions. The release of aceclofenac from formulations F1 to F7 in buffer media (pH 6.8) at the end of 5h was 65.6, 60.7, 55.7, 41.2, 39.2, 27 and 25% respectively. Pulsatile system filled with eudragit coated Ca-alginate microbeads (F2) showed better drug content, particle size, surface topography, in-vitro drug release in a controlled manner. Different plugging materials like Sterculia gum, HPMC K4M and Carbopol were used in the design of pulsatile capsule. The pulsatile system remained intact in buffer pH 1.2 for 2 hours due to enteric coat of the system with HPMCP. The enteric coat dissolved when the pH of medium was changed to 7.4. The pulsatile system developed with Sterculia gum as plugging material showed satisfactory lag period when compared to HPMC and Carbopol.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
G. Kiran ◽  
T. Maneshwar ◽  
Y. Rajeshwar ◽  
M. Sarangapani

A series of β-Isatin aldehyde-N,N′-thiocarbohydrazone derivatives were synthesized and assayed for theirin vitroantimicrobial and antioxidant activity. The new compounds were characterized based on spectral (FT-IR, NMR, MS) analyses. All the test compounds possessed a broad spectrum of activity having MIC values rangeing from 12.5 to 400 μg/ml against the tested microorganisms. Among the compounds3e,3jand3nshow highest significant antimicrobial activity. The free radical scavenging effects of the test compounds against stable free radical DPPH (α,α-diphenyl-β-picryl hydrazyl) and H2O2were measured spectrophotometrically. Compounds3j,3n,3l, and3e, respectively, had the most effective antioxidant activity against DPPH and H2O2scavenging activity.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2020 ◽  
Vol 32 (3) ◽  
pp. 580-586
Author(s):  
Ranjit V. Gadhave ◽  
Bhanudas S. Kuchekar

A new series of N-(benzo[d]thiazol-2-yl)-[1,2,4]triazolo[4,3-c]quinazoline-5-carboxamide derivatives were synthesized by condensation of [1,2,4]triazolo[4,3-c]quinazoline-5-carboxylate derivatives with substituted benzothiazoles. The chemical structures of the synthesized compounds were confirmed by FT-IR, MS and 1H NMR spectra. Designed triazoloquinazoline derivatives were docked with oxido-reductase enzyme (PDB Code 4h1j) and DNA gyrase enzyme (PDB Code 3g75). Based on high binding affinity score, the best compound were selected for synthesis and subjected to in vitro antioxidant and antibacterial activity. Compounds 7a and 7d were found to be most active compounds as antioxidant agent among this series when compared with ascorbic acid. Compounds 7a, 7d and 7f were found to be most active compounds as an antibacterial agents among this series when compared with ciprofloxacin against bacterial strains such as S. aureus (ATCC 25923), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). Study revealed that the most active compounds after structural modifications can be exploited as lead molecules for other pharmacological activities such as anti-inflammatory, anticancer and antidepressant activities.


Sign in / Sign up

Export Citation Format

Share Document