scholarly journals Comparative study on growth traits and ions regulation of zoysiagrasses under varied salinity treatments

2021 ◽  
Vol 16 (1) ◽  
pp. 785-792
Author(s):  
Zhenming Zhang ◽  
Huaguang Hu

Abstract Salt stress affects plant physiology, development, and growth. This research investigated varied salinity levels on growth traits and ions accumulation of four zoysiagrasses and aimed to identify phenotypic traits associated with variability in salinity tolerance. In this study, “S001” zoysiagrass (Zoysia sinica), “Diamond” zoysiagrass (Zoysia matrella), “J026” zoysiagrass (Zoysia japonica), and “M001” zoysiagrass (Zoysia macrostachya) were grown in plastic pots and exposed to 1/2 Hoagland nutrient solution amended with different amounts of NaCl for 120 days. At the end of the experiment, growth traits and ion contents were determined. The results showed that the salt-tolerance of four zoysiagrasses ranked as “M001” > “Diamond” > “J026” > “S001” according to percent green leaf canopy area (GLCA) after 120 days of salinity treatment. Although dry leaf weight, leaf length/width, and shoot height were significantly decreased by salinity treatments for all turfgrasses, the salt-tolerant species had a smaller drop. Besides, ions secretion capacity and Na+ concentration in leaf and root increased, but K+ concentration together with leaf and root K+/Na+ ratios decreased with the increasing concentration of the salinity. However, the salt-tolerant species exhibited strong K+ absorption and transportation ability and a high salt secretion capacity. The results indicated that growth traits and ions regulation were related to variability in tolerance of diverse zoysiagrasses to salt stress.

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 287 ◽  
Author(s):  
Ibrahim Al-Ashkar ◽  
Ali Alderfasi ◽  
Walid Ben Romdhane ◽  
Mahmoud F. Seleiman ◽  
Rania A. El-Said ◽  
...  

Salinity is a major obstacle to wheat production worldwide. Salt-affected soils could be used by improving salt-tolerant genotypes depending upon the genetic variation and salt stress response of adapted and donor wheat germplasm. We used a comprehensive set of morpho-physiological and biochemical parameters and simple sequence repeat (SSR) marker technique with multivariate analysis to accurately demonstrate the phenotypic and genetic variation of 18 wheat genotypes under salinity stress. All genotypes were evaluated without NaCl as a control and with 150 mM NaCl, until the onset of symptoms of death in the sensitive plant (after 43 days of salinity treatment). The results showed that the relative change of the genetic variation was high for all parameters, heritability (>60%), and genetic gain (>20%). Stepwise regression analysis, noting the importance of the root dry matter, relative turgidity, and their respective contributions to the shoot dry matter, indicated their relevance in improving and evaluating the salt-tolerant genotypes of breeding programs. The relative change of the genotypes in terms of the relative turgidity and shoot dry matter during salt stress was verified using clustering methods. For cluster analysis, the genotypes were classified into three groups: tolerant, intermediate, and sensitive, representing five, six, and seven genotypes, respectively. The morphological and genetic distances were significantly correlated based on the Mantel test. Of the 23 SSR markers that showed polymorphism, 17 were associated with almost all examined parameters. Therefore, based on the observed molecular marker-phenotypic trait association, the markers were highly useful in detecting tolerant and sensitive genotypes. Thus, it considers a helpful tool for salt tolerance through marker-assisted selection.


2005 ◽  
Vol 45 (4) ◽  
pp. 391 ◽  
Author(s):  
B. Zhang ◽  
B. C. Jacobs ◽  
M. O'Donnell ◽  
J. Guo

Salt tolerances of 3 cultivars, Menemen puccinellia (Puccinellia ciliata Bor), Tyrrell and Dundas [tall wheatgrass, Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang], were compared with respect to their seed germination, adaptive responses to salt and waterlogging, seedling emergence, plant growth, shoot osmolality and mineral contents in a series of salt-stress experiments. An inverse normal distribution provided good fits for the time to seed germination. Under NaCl stress, 50% of the control (distilled water) seed germination rates of Menemen, Tyrrell and Dundas were achieved in 178.8, 300.9 and 296.8 mmol/L NaCl, respectively. Fifty percent of the control seedling emergence rates of these 3 cultivars were in 92.7, 107.2 and 113.5 mmol/L NaCl, respectively. The seed germination rates of these 3 cultivars under both salt and waterlogging stress were far lower than those germinated only under salt stress at the same salt level. Seed pretreatment by soaking seed in NaCl solutions greatly increased the seed germination rate under salt stress for Menemen and under both salt stress and waterlogging for Dundas. Tyrrell and Dundas were very similar in their tolerance to salt stress, and were significantly (P<0.05) more salt tolerant than Menemen in terms of seed germination and seedling emergence rate. Both shoot height and dry matter of these 3 cultivars were not statistically different among all salt stress levels during the seedling elongation period, indicating that the established plants of these 3 cultivars were very salt tolerant. The salt tolerance mechanisms of these 3 cultivars are possibly related to their abilities to maintain high osmolality in shoots by regulating high sodium and potassium contents, and reducing calcium deficiency under salt stress.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


2017 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
MM Rashid ◽  
L Hassan ◽  
SN Begum

An experiment was conducted using a randomized complete block design to explore the performance of rice landraces under salinity stress condition at Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh. The experiment was consisted of five replication and three different salt treatments viz., EC-6 dSm-1, EC-8 dSm-1, EC-12 dSm-1 with one control condition. Analysis of variance for yield and yield contributing traits showed significant (p<0.01) variation among the genotypes. The performance of all the landraces with respect to yield and yield contributing traits differed from each other under saline condition. Hogla, TalMugur, Nona Bokhra were identified as tolerant to salinity compared to check Binadhan-8, Binadhan-10 and BRRI dhan47 at 12 dSm-1 salinity treatment. All the traits under this study reduced in the salt stress except days to 50% flowering. In higher salt stress landrace Tal Mugur showed maximum yield followed by Ghunshi and Hogla. The findings of this study can be used for further study and also for developing salt tolerant rice varieties.Progressive Agriculture 28 (1): 1-6, 2017


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 127 ◽  
Author(s):  
Muhammad Zeeshan ◽  
Meiqin Lu ◽  
Shafaque Sehar ◽  
Paul Holford ◽  
Feibo Wu

A greenhouse hydroponic experiment was performed using salt-tolerant (cv. Suntop) and -sensitive (Sunmate) wheat cultivars and a salt-tolerant barley cv. CM72 to evaluate how cultivar and species differ in response to salinity stress. Results showed that wheat cv. Suntop performed high tolerance to salinity, being similar tolerance to salinity with CM72, compared with cv. Sunmate. Similar to CM72, Suntop recorded less salinity induced increase in malondialdehyde (MDA) accumulation and less reduction in plant height, net photosynthetic rate (Pn), chlorophyll content, and biomass than in sensitive wheat cv. Sunmate. Significant time-course and cultivar-dependent changes were observed in the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in roots and leaves after salinity treatment. Higher activities were found in CM72 and Suntop compared to Sunmate. Furthermore, a clear modification was observed in leaf and root ultrastructure after NaCl treatment with more obvious changes in the sensitive wheat cv. Sunmate, rather than in CM72 and Suntop. Although differences were observed between CM72 and Suntop in the growth and biochemical traits assessed and modified by salt stress, the differences were negligible in comparison with the general response to the salt stress of sensitive wheat cv. Sunmate. In addition, salinity stress induced an increase in the Na+ and Na+/K+ ratio but a reduction in K+ concentrations, most prominently in Sunmate and followed by Suntop and CM72.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1435
Author(s):  
Yun-Im Kang ◽  
Youn Jung Choi ◽  
Young Ran Lee ◽  
Kyung Hye Seo ◽  
Jung-Nam Suh ◽  
...  

Salt stress is a major constraint of crop productivity because it reduces yield and limits the expansion of agriculture. This study investigated salt tolerance in 26 cultivars of cut lilies (Lilium hybrids) by examining the effect of salt stress on the growth and morphological characteristics of flowers and leaves and their physiological properties (chlorophyll a fluorescence). Salt stress significantly affected the growth and development of cut lilies. Canonical discriminant analysis indicates that the middle leaf width, number of flowers, first flower diameter, petal width, and chlorophyll a fluorescence were correlated with salt stress, whereas plant height, the middle leaf length, days to flowering, and sepal width were less affected by the stress. The cultivars examined were divided into three groups: Group 1 included the salt-sensitive cultivars, which failed to develop normal flowers; Group 2 included cultivars sensitive to salt stress but tolerant to osmotic stress; and Group 3 was the salt-tolerant group, which developed commercially valuable flowers. In conclusion, the cultivars contained a variable range of cut flower characteristics and growth traits that can be employed for lily breeding programs and as material for molecular mechanisms and signaling networks under salt stress.


2021 ◽  
Author(s):  
Langlang Ma ◽  
Minyan Zhang ◽  
Jie Chen ◽  
Chunyan Qing ◽  
Shijiang He ◽  
...  

Abstract Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Azeem ◽  
Qaiser Javed ◽  
Jianfan Sun ◽  
Muhammad I. Nawaz ◽  
Ikram Ullah ◽  
...  

AbstractTwo okra cultivars (Chinese green and Chinese red) were subjected to salt stress for 12 weeks. Salt stress treatments T1 (20.8 mM), T2 (103.3 mM), T3 (180.0 mM) and T4 (257.0 mM) were applied with equal proportions of NaCl and CaCl2 in Hoagland nutrient solution. Salt stress significantly affects photosynthesis, transpiration, stomatal conductance, water use efficiency, water potential, plant height, root length, fresh weight and dry weight of both okra cultivars in every salt stress treatment. At T2, T3 and T4, Chinese red plants maintained their physiological and growth traits up to Weeks 9, 6 and 3, respectively; beyond these salt-stress durations, growth reductions were found. Similarly, Chinese green plants maintained their growth up to Weeks 9, 5 and 3, respectively, at T2, T3 and T4 treatments. In comparison, Chinese red showed more tolerance than Chinese green. According to the results, the third and ninth weeks are the tolerance threshold limits for both cultivars to sustain their physiological traits and growth under T4 and T2 salinity treatments. Similarly, Chinese red has the threshold limit to bear T3 treatment up to the eighth week and Chinese green, up to the fifth week. Thus, this study provides a new method to determine the threshold value of crops with respect to duration under salt stress. This finding would be useful in the field of water saving and utilisation of saline water resources.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


Sign in / Sign up

Export Citation Format

Share Document