scholarly journals Functional traits of okra cultivars (Chinese green and Chinese red) under salt stress

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Azeem ◽  
Qaiser Javed ◽  
Jianfan Sun ◽  
Muhammad I. Nawaz ◽  
Ikram Ullah ◽  
...  

AbstractTwo okra cultivars (Chinese green and Chinese red) were subjected to salt stress for 12 weeks. Salt stress treatments T1 (20.8 mM), T2 (103.3 mM), T3 (180.0 mM) and T4 (257.0 mM) were applied with equal proportions of NaCl and CaCl2 in Hoagland nutrient solution. Salt stress significantly affects photosynthesis, transpiration, stomatal conductance, water use efficiency, water potential, plant height, root length, fresh weight and dry weight of both okra cultivars in every salt stress treatment. At T2, T3 and T4, Chinese red plants maintained their physiological and growth traits up to Weeks 9, 6 and 3, respectively; beyond these salt-stress durations, growth reductions were found. Similarly, Chinese green plants maintained their growth up to Weeks 9, 5 and 3, respectively, at T2, T3 and T4 treatments. In comparison, Chinese red showed more tolerance than Chinese green. According to the results, the third and ninth weeks are the tolerance threshold limits for both cultivars to sustain their physiological traits and growth under T4 and T2 salinity treatments. Similarly, Chinese red has the threshold limit to bear T3 treatment up to the eighth week and Chinese green, up to the fifth week. Thus, this study provides a new method to determine the threshold value of crops with respect to duration under salt stress. This finding would be useful in the field of water saving and utilisation of saline water resources.

Author(s):  
Leandro de P. Souza ◽  
Reginaldo G. Nobre ◽  
Evandro M. da Silva ◽  
Geovani S. de Lima ◽  
Francisco W. A. Pinheiro ◽  
...  

ABSTRACT The objective of this research was to evaluate the growth and formation of fresh and dry weight of ‘Crioula’ guava rootstock irrigated with waters of different saline levels and nitrogen (N) doses, in an experiment conducted in plastic tubes under greenhouse conditions. The experimental design was randomized blocks, in a 5 x 4 factorial scheme with four replicates, and the treatments consisted of five levels of water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7 and 3.5 dS m-1) and four N doses (70, 100, 130 and 160% of the N dose recommended for the cultivation of guava seedlings, cv. ‘Paluma’). The dose referring to 100% corresponds to 773 mg of N dm-3. The highest growth of ‘Crioula’ guava rootstock was obtained with ECw of 0.3 dS m-1 and fertilization of 541.1 mg N dm-3 of soil; increasing N doses did not reduce the deleterious effect of the salt stress on the growth and phytomass formation of ‘Crioula’ guava rootstock; irrigation with water of up to 1.75 dS m-1, in the production of guava rootstocks, promotes acceptable reduction of 10% in growth and quality of the seedlings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


2015 ◽  
Vol 67 (4) ◽  
pp. 1185-1194 ◽  
Author(s):  
Yuan Guo ◽  
Qiong Yu ◽  
Xiaohui Feng ◽  
Zhixia Xie ◽  
Xiaojing Liu

In this study, we investigated the effects of artificial defoliation on the growth and physiological response of Lycium chinense Mill. to salt stress. Our results show that partial defoliation increases the plant relative growth rate, leaf water content and dry weight-based leaf Na+ content, and reduces the fresh weight-based leaf Na+ content under salt stress. In response to defoliation, the leaf Na+/Ca2+ and Na+/Mg2+ ratios were decreased, but the K+ content remained unchanged. The contents of ROS and MDA were decreased in defoliated plants. Net The photosynthetic rate (PN), stomatal conductance (gs), electron transport rate (ETR), actual photochemical quenching (?PSII) and photochemical quenching (qp) were enhanced by defoliation. Together, these findings indicate that partial defoliation mitigates the salt-induced growth inhibition and physiological damage in L. chinense.


2020 ◽  
Vol 26 (4) ◽  
pp. 537-544
Author(s):  
Abdul Kareem A.J. Mohammad Saeed

Abstract An experiment was conducted during the season 2018-2019 in the lath house to study the effect of foliar spray with Ascorbic Acid (AsA) and Salicylic Acid (SA) on vegetative and flowering growth traits of Gazania (Gazania rigens L.) cv. Frosty Kiss Mixed. The experiment was designed as a factorial experiment (3×3) in Randomized Complete Blocks Design (RCBD) with three replicates. Plants were sprayed with concentrations of 0, 100, and 200 mg L-1 of AsA, and 0, 150 and 300 mg L-1 of SA. Foliar spray with 200 mg L-1 of AsA was superior on increasing number of leaves (40.00), number of suckers (9.22), leaf area (2174.09 cm2), leaves dry weight (6.36 g), number of flowers (5.64), early of flowering date (97.22 days), flower fresh and dry weight (4.78 g) (0.51 g) respectively, while spray with a concentration of 100 mg L-1 led to increase flower diameter (6.37 cm) and flowering duration (10.85 days). Foliar spray with SA improved all vegetative and flowering traits. Treatment of 300 mg L-1 was the most significant effect in increasing number of leaves (39.56), leaf area (2182.06 cm2), leaves fresh weight (43.93 g), number of flowers (5.83), flower diameter (6.31 cm), early of flowering date (98.07 days), and flower dry weight (0.50 g). The interaction effect between the studied factors was significant in all studied traits. Treatment of AsA200×SA150 was the most effective and gave the best results in terms of number of suckers (9.11), dry weight of leaves (6.49 g), number of flowers (5.87), flower diameter (6.44 cm), flowering date (96.98 days), flowering duration (10.89 days).


2020 ◽  
Vol 5 (2) ◽  
pp. 144-150
Author(s):  
Sharmin Akter ◽  
Dilruba Yeasmin Jharna ◽  
Sujan Kanti Mali ◽  
Abu Sayeed

The present study was accomplished to find out the effects of salinity on germination, growth, physiological and biochemical processes of two different groundnuts (Arachis hypogaea L.), varieties viz., Dacca-1, and Zhinga groundnut. The experiments consisted of five salinity treatments viz., control (no salinity), 3, 6, 9, and 12dS/m during germination and vegetative stage of groundnut varieties. Results showed that germination percentage of both the groundnut varieties was significantly decreased with the increase of salt concentration. During the germination stage, maximum shoot and root length, shoot and root fresh weight and shoot and root dry weight of groundnut varieties were recorded from Zhinga groundnut variety at salt stress. The same result occurred during the vegetative stage of Dacca-1 variety while the Zhinga groundnut variety showed maximum parameters than Dacca-1. Fresh weight, as well as dry weight, of shoots and roots of both the groundnut varieties was also decreased with the increase of salt concentrations while leaf proline concentrations were increased among these varieties. Salinity caused significant (P<0.001) reduction in chlorophyll a, chlorophyll b, and total chlorophyll content in both the genotypes. Between two genotypes, Zhinga groundnut recorded higher chlorophyll a, chlorophyll b and total chlorophyll content than Dacca-1. From the studies, it is concluded that the groundnut genotype Zhinga was identified as the tolerant genotype to salt stress than Dacca-1. Overall results indicate that high salinity condition is not suitable for growing the groundnut.


2017 ◽  
Vol 43 (2) ◽  
pp. 179
Author(s):  
Lin-Tao HOU ◽  
Teng-Yue WANG ◽  
Hong-Ju JIAN ◽  
Jia WANG ◽  
Jia-Na LI ◽  
...  

Author(s):  
Pedro Henrique Máximo de Souza Carvalho ◽  
Gertrudes Macário de Oliveira ◽  
Ruy de Carvalho Rocha ◽  
Josineide Ednalva Pereira ◽  
Tatiane dos Santos Carvalho ◽  
...  

Lettuce is a crop with high commercial and social importance, reaching from the macro to the Brazilian micro producer. The objective of this study was to evaluate the agronomic performance of Elba and Rouge lettuce cultivars in terms of development and production, under different environments, for the edaphoclimatic conditions of Juazeiro, Bahia. The experimental design adopted was completely randomized, in a split plot scheme, with two production environments (shaded environment and full sun) in the plots, and two lettuce cultivars (Crespa, CV. 1 Elba and Roxa, CV. 2 Rouge) in the subplots. The variables analyzed were: plant height, plant diameter, average fresh weight, average dry weight, total productivity and water use efficiency. The cultivation system in a protected environment showed better development and high productivity for the two lettuce cultivars, when compared to the system in full sun. Cultivar 1 showed superior performance to cultivar 2, in all variables analyzed, in both cultivation systems.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


2021 ◽  
Vol 24 (2) ◽  
pp. 33-46
Author(s):  
MS Rahman ◽  
MA Malek ◽  
RM Emon ◽  
A Hannan ◽  
GHM Sagor

Three advanced lines (SB02, SB05, SB07) along with one tolerant (Lokon) and one susceptible check (Asswt) of soybean (Glycine max L.) were assessed for salt tolerance in terms of morpho-physiological traits and molecular markers (SSR). The experiment was conducted at seedling stage with four salinity treatments namely 0, 8, 12 and 16 dSm-1 following Completely Randomized design. All the genotypes displayed considerable reduction in their morphological traits, least affecting the tolerant one. None of the genotypes were survived at 12 and 16 dSm-1 stress condition. Among the lines tested, SB-02 and SB-05 were identified as salt tolerant at 8 dSm-1 based on salinity susceptibility index (SSI) scoring. These genotypes suffered less in reduction of leaf chlorophyll content (SPAD) and increase of Na+/K+ than the susceptible genotypes. For all the traits viz. shoot length, root length, total length, shoot fresh weiht, root fresh weight, shoot dry weight, root dry weight, total fresh weight, total dry weight, percent live leaves, chlorophyll content and Na+/K+ ratio, the phenotypic coefficient of variation (PCV) was higher than that of genotypic coefficient of variation (GCV). All the traits studied showed medium to high heritability ranging between 43.81% (SPAD) to 96.65% (shoot length). The genotypes were grouped into two clusters considering both Euclidian distance and Unweighted Pair Group Method with Arithmetic Mean analysis. Lokon, SB-02 and SB-05 are on the same cluster as tolerant, and SB-7 and Asset on the other as susceptible to salt stress. The molecular pattern using by SSR marker displayed an average number of 3.33 alleles per locus with PIC (Polymorphism Information Content) values ranged from 0.2688 (sat_655 and satt728) to 0.7680 (sat_210). The highest gene diversity was observed in sat_210 and satt237 and the lowest in sat_655 and satt728 with a mean diversity of 0.5733. The genotypes Lokon, SB-02 and SB-05 could be suggested as a potential germplasm source of QTL (Quantitative Trait Loci) analysis for the development of salt tolerant soybean variety. Ann. Bangladesh Agric. (2020) 24(2): 33-46


Author(s):  
Boumaaza Boualem ◽  
Boudalia Sofiane ◽  
Gacemi Abdelhamid ◽  
Benzohra .I . E ◽  
Benada M’hamed ◽  
...  

A greenhouse experiment was conducted to investigate the effect of different levels of NaCl salt on tomato upon B. cinerea infection the causal agent of gray mold disease. The disease assessment was recorded after inoculation by using the scale based on percentage leaf area affected, and the growth of the plants was recorded for each treatment. Three weeks after inoculation by conidial suspension, the estimated disease severity on plants of tomato was 35.18% compared to the control. The highest incidence disease increase of gray mold (39.21%) was obtained with using 300 mM of NaCl after inoculation with B. cinerea compared with the other concentrations and as well as distilled water. Under severe salt stress (150 and 300mM) increased susceptibility of gray mold disease severity were observed in plants inoculated with B. cinerea, while under mild salt stress (50mM of NaCl) this effect was reversed. The treatment of plant by B.cinerea has reduced the growth of the aerial part of tomato plants (39.06%) after three weeks inoculation compared to the control. Three levels of NaCl (50, 100 and 150mM) increased respectively the plant height from 12.73 to 29.84%, 0.28 to 27.16% for the fresh eight and 5.75 to 33.35% for dry weight compared to the plants inoculated and irrigated by distilled water. NaCl addition at 300mM on plants inoculated with B. cinerea decreased the height, fresh weight and dry weight at 0.99, 4.45 and 11.01% respectively.


Sign in / Sign up

Export Citation Format

Share Document