Anionic effect in high concentration alcohol organosolv pulping

Holzforschung ◽  
2004 ◽  
Vol 58 (1) ◽  
pp. 1-6 ◽  
Author(s):  
D. Yawalata ◽  
L. Paszner

Abstract Anionic effects are demonstrated with Mg-salts and free acids in high alcohol content organosolv pulping. Not all catalysts examined could effectively liberate the fibers from the wood matrix. The best result was obtained with the 0.025 M MgCl2 catalysis system, at which nearly 60% screened pulp, with viscosity of 19.9 cPs., can be produced. Mg(NO3)2 was found capable of liberating fibers, however, under the conditions set for the experiment, complete fiber liberation was not achieved. In contrast, MgSO4 and Mg(CH3COO)2 were incapable of fiber liberation in themselves. On the other hand, in acid form, HCl and H2SO4 were capable of liberating the fibers, whereas HNO3 and CH3COOH catalysts were found ineffective. Especially with H2SO4, it should be noted that this catalysis system created a very strong hydrolyzing effect that unselectively destroyed both lignin and carbohydrates, resulting in severely damaged pulp which is useless for papermaking purposes. Therefore, choosing a suitable catalyst is the key factor for producing an organosolv pulp at high yield and with good fiber quality.

Holzforschung ◽  
2004 ◽  
Vol 58 (1) ◽  
pp. 7-13 ◽  
Author(s):  
D. Yawalata ◽  
L. Paszner

Abstract Catalyst employment in cooking liquor of 80% aqueous methanol is required for fiber liberation at high yield (50%) and has a remarkable impact on pulp production capability in the alcohol organosolv pulping of spruce wood. In alcohol solution without a suitable catalyst, the softwood fibers cannot be effectively liberated from the wood matrix. The effectiveness of the catalysts tested in this research varied widely. Divalent metal ions were found to be very effective, whereas monovalent cations were incapable of fiber liberation and trivalent cations were found to be too aggressive and hydrolyzed the carbohydrates, causing extensive damage to the fibers. Under the specified pulping conditions, the divalent metal ion catalyzed alcohol organosolv pulping process was capable of producing 60–61% screened pulp. Successful chemical pulp production by the NAEM (Neutral Alkali Earth Metal) catalyzed organosolv pulping process opens access to biorefining and provides value recovery both from the pulp and also from the dissolved wood components from the spent pulping liquor.


Author(s):  
Minghao Yi ◽  
Liang Wang ◽  
Congmeng Hao ◽  
Qingquan Liu ◽  
Zhenyang Wang

AbstractThe purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane (CMM), and the sealing depth is a key factor that affects the performance of underground methane drainage. In this work, the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth. The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively. Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones, and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone. Moreover, sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance. Considering these findings, a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period. The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage, thereby improving considerably the drainage and utilization rates of CMM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingfeng Yang ◽  
Hanze Ying ◽  
Zhixia Li ◽  
Jiang Wang ◽  
Yingying Chen ◽  
...  

AbstractMacrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulky N-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promoting cis C = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulky N-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.


2019 ◽  
Vol 116 (32) ◽  
pp. 16121-16126 ◽  
Author(s):  
Ying Zhang ◽  
Yan Xiong ◽  
Renyi Liu ◽  
Hong-Wei Xue ◽  
Zhenbiao Yang

Grain size is a key factor for determining grain yield in crops and is a target trait for both domestication and breeding, yet the mechanisms underlying the regulation of grain size are largely unclear. Here we show that the grain size and yield of rice (Oryza sativa) is positively regulated by ROP GTPase (Rho-like GTPase from plants), a versatile molecular switch modulating plant growth, development, and responses to the environment. Overexpression of rice OsRac1ROP not only increases cell numbers, resulting in a larger spikelet hull, but also accelerates grain filling rate, causing greater grain width and weight. As a result, OsRac1 overexpression improves grain yield in O. sativa by nearly 16%. In contrast, down-regulation or deletion of OsRac1 causes the opposite effects. RNA-seq and cell cycle analyses suggest that OsRac1 promotes cell division. Interestingly, OsRac1 interacts with and regulates the phosphorylation level of OsMAPK6, which is known to regulate cell division and grain size in rice. Thus, our findings suggest OsRac1 modulates rice grain size and yield by influencing cell division. This study provides insights into the molecular mechanisms underlying the control of rice grain size and suggests that OsRac1 could serve as a potential target gene for breeding high-yield crops.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Long Guo ◽  
Baolong Liu ◽  
Chen Zheng ◽  
Hanxun Bai ◽  
Hao Ren ◽  
...  

The present study aimed to investigate whether leucine affects the pancreatic exocrine by controlling the antisecretory factor (AF) and cholecystokinin receptor (CCKR) expression as well as the proteasome activity in pancreatic acinar cells of dairy calves. The pancreatic acinar cells were isolated from newborn Holstein bull calves and cultured using the Dulbecco’s modified Eagle’s medium/nutrient mixture F12 Ham’s liquid (DMEM/F12). There were six treatments of leucine dosage including 0 (control), 0.23, 0.45, 1.35, 4.05, and 12.15 mM, respectively. After culture for 3 h, the samples were collected for subsequent analysis. As the leucine concentration increased from 0 to 1.35 mM, the α-amylase activity in media decreased significantly (P<0.05), while further increase in leucine concentration did not show any decrease in α-amylase activity. Addition of leucine inhibited (P<0.05) the expression of AF and CCKR, and decreased the activity of proteasome (P<0.05) by 76%, 63%, 24%, 7%, and 9%, respectively. Correlation analysis results showed α-amylase secretion was negatively correlated with leucine concentration (P<0.01), and positively correlated with proteasome activity (P<0.01) and the expression of CCK1R (P<0.01) and AF (P<0.05). The biggest regression coefficient was showed between α-amylase activity and proteasome (0.7699, P<0.001). After inhibition of proteasome by MG-132, low dosage leucine decreased (P<0.05) the activity of proteasome and α-amylase, as well as the expression of CCK1R. In conclusion, we demonstrated that the high-concentration leucine induced decrease in α-amylase release was mainly by decreasing proteasome activity.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Sylvia Soldatou ◽  
Anjali Jaykumar ◽  
Abeysiri H.A.S.N ◽  
Pathmalal M. Manage ◽  
Ondřej Mašek ◽  
...  

Cyanobacterial blooms are a serious threat to public health and water quality due to the production of cyanotoxins as a result of nutrient pollution from industry, agriculture, domestic waste as well as global warming. The microcystins (MCs) are the most abundant cyanotoxins consisting of >200 analogues causing both acute and chronic toxicity, sometimes resulting in death. In Asian countries, such as Sri Lanka, reports of kidney disease are constantly increasing. Although no direct link between metal and pesticide contamination in water and kidney disease has been found, high concentration of cyanobacteria cells in drinking water wells implies that the nephrotoxic effects of cyanotoxins might play a key factor in the reports of Chronic Kidney Disease of unknown aetiology (CKDu) in Sri Lanka. Therefore, we propose a nature-based approach for water treatment which will study the hypotheses that cyanotoxins can cause CKDu. Sri Lankan bacterial isolates (Alcaligens sp., Roseateles sp., Bacillus sp., and Micrococcus sp.) known to degrade microcystins, were used to form biofilm on biochar from Sri Lankan crop residues, such as coconut shells. The immobilisation of the microbes was assessed via a high-throughput colourimetric assay, followed by monitoring the biodegradation rate of microcystins when added to the immobilised cultures. Biodegradation products were analysed and identified through molecular networking and quantified via LC-MS/MS. Ultimately, this project will provide safe water in line with UN Sustainable Development Goal 6.1 as well contributing in sustainable goals 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities) and 12 (Responsible Production and Consumption).


2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
. HASNAM ◽  
EMY SULISTYOWATI ◽  
SIWI SUMARTINI ◽  
FITRINTNGDYAH TRI KADARWATI ◽  
PRIMA D. RIAJAYA

<p>Tujuan utama pemuliaan kapas di Indonesia adalah meningkatkan produktivitas dan kualitas serat dalam upaya meningkatkan pendapatan petani dan memperbaiki mutu benang tcnun seta kualitas tekstil yang harus bersaing di pasar internasional. Scjumlah enam persilangan telah dilakukan antara dua varietas dai India. I.RA 5166 dan SRT-1 dengan dua varietas dai Amerika Serikat, Dcltapine 55 dan Deltapinc Acala 90 dan satu vaietas dai Australia, Siokra. Seleksi individu, seleksi galur dan seleksi individu dalam galur dilaksanakan pada generasi F2 sampai F5 berdasarkan jumlah buah, tingkat kerusakan daun terhadap Sundapteryx biguttula. dan mutu serat; semua proses di atas dilakukan pada kondisi lahan tadah hujan, dan tanpa penggunaan insektisida terhadap tanaman; dari proses di atas diperoleh 12 galur harapan. Sejumlah 13 percobaan dilakukan antara tahun 1993 sampai dengan 2001 untuk mengamati kcragaan galur-galur baru tersebut; pengujian dilakukan di Jawa Timur dan Sulawesi Selatan, menggunakan teknik-teknik penelitian standar. Dengan proscdur ini dapat diidcntifikasi beberapa galur yang menunjuk¬ kan perbaikan serenlak hasil dan kualitas serat kapas. Beberapa penelitian juga dilakukan untuk mcngcvaluasi tanggap galur-galur tersebut pada tumpangsari dengan kedelai dan kacang hijau di Jawa Timur. Dua galur, 88003/16/2 dan 92016/6 (sudah dilepas dengan nama vaietas Kanesia 8 dan Kanesia 9 pada bulan Juni 2003), menunjukkan produktivitas dan kualitas serai yang lebih linggi. Rata-rata, kedua vaietas menghasilkan 1.85 ton dan 191 ton kapas berbiji per hektar atau 8-12% lebih tinggi dai hasil vaietas Kanesia 7 yang sudah dilepas sebelumnya. Persentase serat 35.2%, kekuatan serat berkisar antara 22.6-24.7 gram tex'1, serat lebih panjang dan berkisar 29.2-30.3 mm sedangkan angka mikroncr lebih rendah yang menyatakan bahwa serat lebih halus. Semua perbaikan di atas menunjukkan perbaikan mutu serat. Kanesia 8 dan Kanesia 9 juga menunjukkan peningkatan ketahanan terhadap Sundapteryx biguttula dan komplcks hama kapas. Kanesia 8 dan Kanesia 9 kurang kompctitif dalam tumpang sari dengan kedelai jika dibandingkan dengan Kanesia 7. Pada tumpang sari dengan kacang hijau Kanesia 8 juga mengalami kehilangan hasil yang tinggi, sedangkan Kanesia 9 menunjukkan toleransi yang tinggi dalam kompctisi dengan kacang hijau. Pelepasan Kanesia 8 dan Kanesia 9 akan memberikan pilihan varietas yang lebih banyak bagi petani dan perusahaan pemintalan untuk menyesuaikan dengan produk akhirnya.</p><p>Kata kunci : Gossypium hirsutum, prosedur pemuliaan, produktivitas, kualitas serat, Sundapteryx biguttula, tumpangsari</p><p> </p><p><strong>ABSTRACT </strong></p><p><strong>Genetic improvement on two new cotton varieties, Kanesia 8 and Kanesia 9</strong></p><p>The main objective of cotton breeding in Indonesia is to improve productivity and fiber quality which is aimed to increase farmers' income and to make beter yam and textile quality that has to compete in international market Six crosses were made between two Indian varieties, LRA 5166 and SRT-1 with two USA vaieties, Deltapine 55 and Deltapinc Acala 90 and one Australian variety, Siokra. Individual plants, lines and individual within lines were selected on F2-F5 generations based on boll- counts, leaf-damage by jassids and fiber traits, those were conducted under rainfed and insecticide-ree condition; twelve promising lines were produced from this process. A total of 13 trials were carried out to observe performance of these new lines during 1993 to 2001; those were located in East Java and South Sulawesi using the standardized experimental techniques. By these procedures make it possible to identify several breeding lines showing simultaneous improvement in yield and fiber quality. Several tests were also made to evaluate response of those lines under intercropping with soybean and mungbean, which were located in East Java. Two breeding lines, 88003/16/2 and 92016/6 (those have been released as Kanesia 8 and Kanesia 9 in 2003), showed higher productivity and fiber quality. In average, these new vaieties produced 1.85 and 1.91 ton ha'1 seed cotton respectively or 8 to 12% higher than those on Kanesia 7, the previously released vaiety. Lint turn-out was 35.2% fiber-strength was varied from 22.6 to 24.7 gram tex'1 , fiber lengths ranged from 29.2 to 30.3 mm with lower micronaire-valucs indicating better fiber-ineness. All of those improvements represented a trend toward a higher quality iber. Kanesia 8 and Kanesia 9 also showed a slight improvement in resistance to jasssids and insect pest-complex. Kanesia 8 and Kanesia 9 performed lower competitive ability under intercropping with soybean in comparison with Kanesia 7. Under intercropping with mungbean Kanesia 8 also suffered high yield loss, wherein Kanesia 9 showed good tolerance to mungbean. The release of Kanesia 8 and Kanesia 9 is expected to give a broader choice for the cotton growers and spinning-mills to match with their inal product.</p><p>Key words: Coton (Gossypium hirsutum), breeding procedure, productivity, liber quality, Sundapteryx bigullul. inter¬ cropping.</p>


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Xin Yang ◽  
Yong J. Liu ◽  
Ming Xue ◽  
Tian H. Yang ◽  
Bin Yang

Water–sand inrush is one of the most serious disasters for mining in China. The evaluation of the occurrence and development of a high-concentration water and sand mixed fluid is an important issue for mining in China. In this study, contraposing to the 3 phases of water–sand inrush, three kinds of experiments are designed for the investigation of initiation, development, and occurrence of the disaster. A new sand–water transport testing system is setup to perform the tests. The results show that there are two key points in the disaster: (1) sand particle incipient motion and (2) porous skeleton structural instability. The incipient motion of sand grains is accompanied with the phenomena of volumetric dilatation and granular fluidization. The critical velocity of the incipient motion of the water–sand mixed fluid is significantly affected by the particle size and external stress. The interaction between water and sand grains is the key factor affecting the motion characteristics of water–sand mixture. When the hydraulic conditions exceed the threshold, the water and sand grains are mutually promoted, and the aquifer skeleton becomes unstable. Furthermore, during the water–sand inrush, the curves of volumetric flow rates of sand and water, respectively, for different samples manifest as two distinct waveforms.


2011 ◽  
Vol 77 (10) ◽  
pp. 3197-3201 ◽  
Author(s):  
Xiaoman Xu ◽  
Chao Gao ◽  
Xifeng Zhang ◽  
Bin Che ◽  
Cuiqing Ma ◽  
...  

ABSTRACTProduction ofN-acetyl-d-neuraminic acid (Neu5Ac) via biocatalysis is traditionally conducted using isolated enzymes or whole cells. The use of isolated enzymes is restricted by the time-consuming purification process, whereas the application of whole cells is limited by the permeability barrier presented by the microbial cell membrane. In this study, a novel type of biocatalyst, Neu5Ac aldolase presented on the surface ofBacillus subtilisspores, was used for the production of Neu5Ac. Under optimal conditions, Neu5Ac at a high concentration (54.7 g liter−1) and a high yield (90.2%) was obtained under a 5-fold excess of pyruvate overN-acetyl-d-mannosamine. The novel biocatalyst system, which is able to express and immobilize the target enzyme simultaneously on the surface ofB. subtilisspores, represents a suitable alternative for value-added chemical production.


Sign in / Sign up

Export Citation Format

Share Document