Identification and Evaluation of Probiotic Potential in Yeast Strains Found in Kefir Drink Samples from Malaysia

Author(s):  
Mohd Akmal Azhar ◽  
Mimi Sakinah Abdul Munaim

AbstractKefir drink is a source of probiotic microorganism with remarkable functional and technological properties. The objective of this work is to isolate yeast strains from Malaysian kefir drink and evaluate them for probiotic potentials. In the present study, nine strains of probiotic yeast were isolated from a Malaysian kefir drink and identified according to their 16S rDNA sequences. Furthermore, their probiotic potential was evaluated. The probiotic properties were tested for aspects of antibiotic susceptibility, antimicrobial activity, and gastrointestinal condition tolerance (pH and temperature). Five isolated strains, M3, Y5, Y9, Y11 and A1, showed good tolerance towards low pH condition while three strains, A1, M1, and M3, showed antimicrobial activity against E. coli, P. aeruginosa, and Salmonella sp. Most isolates were resistant to penicillin, streptomycin, and ampicillin, and grew well at human body temperature. The result of this test indicates that the yeast strains isolated from Malaysian kefir drink have excellent potential for use as probiotics in various products. Lastly, kefir milk is one of the excellent source of probiotic yeast strains and could be used as a new yeast probiotic formulation or in food supplements.

2021 ◽  
Author(s):  
Z. Alkay ◽  
E. Dertli ◽  
M.Z. Durak

Abstract In this study, 14 yeast cultures from 62 isolates from traditional sourdoughs collected from 6 different regions of Turkey were selected by FT-IR identification and characterised to reveal their probiotic properties. Four yeast strains were genotypically identified and compared with FT-IR identification. In all analyses, it was observed that mostly Saccaromyces cerevisiae strain exhibited high hydrophobicity, auto-aggregation feature, and all yeast isolates in this study showed tolerance to 0.3%, even salt concentration. In addition, all yeast strains were susceptible to anti-yeasts agents, although they were resistant to all antibiotics used in the study. All selected yeast isolates exhibited high antimicrobial activity against the Staphylococcus aureus. In conclusion, this study investigated the potential probiotic properties of yeast strains isolated from sourdough.


2019 ◽  
Vol 9 (3) ◽  
pp. 601 ◽  
Author(s):  
Alicia Cervantes-Elizarrarás ◽  
Nelly Cruz-Cansino ◽  
Esther Ramírez-Moreno ◽  
Vicente Vega-Sánchez ◽  
Norma Velázquez-Guadarrama ◽  
...  

Probiotics can act as a natural barrier against several pathogens, such Helicobacter pylori, a bacterium linked to stomach cancer. The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from pulque and aguamiel, and evaluate their probiotic potential and antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Ten isolates were selected and evaluated for in vitro resistance to antibiotics and gastrointestinal conditions, and antimicrobial activity against E. coli and S. aureus and the effect on H. pylori strains. 16S rRNA identification was performed. Ten potential probiotic isolates were confirmed as belonging to the genera Lactobacillus and Pediococcus. All the strains were susceptible to clinical antibiotics, except to vancomycin. Sixty percent of the isolates exhibited antimicrobial activity against E. coli and S. aureus. The growth of H. pylori ATCC 43504 was suppressed by all the LAB, and the urease activity from all the H. pylori strains was inhibited, which may decrease its chances for survival in the stomach. The results suggest that LAB isolated from pulque and aguamiel could be an option to establish a harmless relationship between the host and H. pylori, helping in their eradication therapy.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 368
Author(s):  
Joy Igbafe ◽  
Agnes Kilonzo-Nthenge ◽  
Samuel N. Nahashon ◽  
Abdullah Ibn Mafiz ◽  
Maureen Nzomo

The probiotic potential and antimicrobial activity of Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and Bifidobacterium longum were investigated against Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes. Selected strains were subjected to different acid levels (pH 2.5–6.0) and bile concentrations (1.0–3.0%). Strains were also evaluated for their antimicrobial activity by agar spot test. The potential probiotic strains tolerated pH 3.5 and above without statistically significant growth reduction. However, at pH 2.5, a significant (p < 0.05) growth reduction occurred after 1 h for L. plantarum (4.32 log CFU/mL) and B. longum (5.71 log CFU/mL). S. cerevisiae maintained steady cell counts for the entire treatment period without a statistically significant (p > 0.05) reduction (0.39 log CFU/mL). The results indicate at 3% bile concertation, 1.86 log CFU/mL reduction was observed for L. plantarum, while S. cerevisiae, and B. longum growth increased by 0.06 and 0.37 log CFU/mL, respectively. L. plantarum and B. longum demonstrated antimicrobial activity against E. coli O157:H7, S. typhimurium and L. monocytogenes. However, S. cerevisiae did not display any inhibition to any of the pathogens. The results indicate that L. plantarum and B. longum present probiotic potential for controlling E. coli O157:H7, S. and L. monocytogenes in poultry.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nathan das Neves Selis ◽  
Hellen Braga Martins de Oliveira ◽  
Hiago Ferreira Leão ◽  
Yan Bento dos Anjos ◽  
Beatriz Almeida Sampaio ◽  
...  

Abstract Background Probiotics are important tools in therapies against vaginal infections and can assist traditional antibiotic therapies in restoring healthy microbiota. Recent research has shown that microorganisms belonging to the genus Lactobacillus have probiotic potential. Thus, this study evaluated the potential in vitro probiotic properties of three strains of Lactiplantibacillus plantarum, isolated during the fermentation of high-quality cocoa, against Gardnerella vaginalis and Neisseria gonorrhoeae. Strains were evaluated for their physiological, safety, and antimicrobial characteristics. Results The hydrophobicity of L. plantarum strains varied from 26.67 to 91.67%, and their autoaggregation varied from 18.10 to 30.64%. The co-aggregation of L. plantarum strains with G. vaginalis ranged from 14.73 to 16.31%, and from 29.14 to 45.76% with N. gonorrhoeae. All L. plantarum strains could moderately or strongly produce biofilms. L. plantarum strains did not show haemolytic activity and were generally sensitive to the tested antimicrobials. All lactobacillus strains were tolerant to heat and pH resistance tests. All three strains of L. plantarum showed antimicrobial activity against the tested pathogens. The coincubation of L. plantarum strains with pathogens showed that the culture pH remained below 4.5 after 24 h. All cell-free culture supernatants (CFCS) demonstrated activity against the two pathogens tested, and all L. plantarum strains produced hydrogen peroxide. CFCS characterisation in conjunction with gas chromatography revealed that organic acids, especially lactic acid, were responsible for the antimicrobial activity against the pathogens evaluated. Conclusion The three strains of L. plantarum presented significant probiotic characteristics against the two pathogens of clinical importance. In vitro screening identified strong probiotic candidates for in vivo studies for the treatment of vaginal infections.


2021 ◽  
Vol 7 (10) ◽  
pp. 794
Author(s):  
Camilla I. dos Santos ◽  
Carmem D. L. Campos ◽  
Wallace R. Nunes-Neto ◽  
Monique S. do Carmo ◽  
Flávio A. B. Nogueira ◽  
...  

Limosilactobacillus fermentum (ATCC 23271) was originally isolated from the human intestine and has displayed antimicrobial activity, primarily against Candida species. Complete genome sequencing and comparative analyses were performed to elucidate the genetic basis underlying its probiotic potential. The ATCC 23271 genome was found to contain 2,193,335 bp, with 2123 protein-coding sequences. Phylogenetic analysis revealed that the ATCC 23271 strain shares 941 gene clusters with six other probiotic strains of L. fermentum. Putative genes known to confer probiotic properties have been identified in the genome, including genes related to adhesion, tolerance to acidic pH and bile salts, tolerance to oxidative stress, and metabolism and transport of sugars and other compounds. A search for bacteriocin genes revealed a sequence 48% similar to that of enterolysin A, a protein from Enterococcus faecalis. However, in vitro assays confirmed that the strain has inhibitory activity on the growth of Candida species and also interferes with their adhesion to HeLa cells. In silico analyses demonstrated a high probability of the protein with antimicrobial activity. Our data reveal the genome features of L. fermentum ATCC 23271, which may provide insight into its future use given the functional benefits, especially against Candida infections.


2013 ◽  
Vol 62 (2) ◽  
Author(s):  
Ng Yik Han Han ◽  
Ting Jen Yi ◽  
Yeo Tiong Chia

A study was carried out to evaluate the antimicrobial activity of 51 actinomycetes strains isolated from environmental samples collected during an expedition at Paya Maga, located in Ulu Trusan, Lawas, Sarawak. These actinomycetes strains were isolated from 20 soil and 15 plant samples. Their ability to inhibit the growth of Gram positive bacteria (Staphylococcus aureus, Micrococcus luteus), Gram negative bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) were tested by using co-culture method. Twenty five percent of the isolates (13 out of 51) were active against at least one bacteria or one yeast standard strain while 18 (35%) were active against at least two standard strains, indicating broad spectrum activities. The results also showed that 23% (7 strains) of the positive isolates with single or broad spectrum activities were able to show better result in comparison to 100 mg/L of Chloramphenicol and Nystatin used (by forming inhibition zone more than 20 mm in diameter). The 31 inhibitory strains were sequenced and partial 16S rDNA sequences were derived for taxonomic identification. The majority of these strains (27 out of 31) belong to the family of Streptomycetaceae, followed by 2 strains from Streptosporangiaceae and 1 strain each from Nocardiaceae and Pseudonocardiaceae. Sixteen of the isolates can only be classified up to the genus level so they are potentially novel species which are targets for further study to isolate antimicrobial agents.


Author(s):  
Mangala Lakshmi Ragavan ◽  
Nilanjana Das

Objective The objective of the present study was to identify the potential yeast isolates at themolecular level and evaluate their probiotic characteristics.MethodsMolecular characterization was done for 5 potential probiotic yeast strains. In vitro assays have been conducted to evaluate the probiotic properties such as NaCl tolerance, autoaggregation and co-aggregation. Haemolyticactivity, urease activity and cytotoxicity tests were carried out for safety assay during the characterization of yeast strains.ResultsIn this study, the yeast strains viz. LM,MR,GOI,GII2and WI were identified at molecular level and named as Yarrowialipolytica VIT-MN01, Kluyveromyces lactis VIT-MN02, Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligera VIT-MN04, Brettanomyces custersianus VIT-MN05 respectively. Maximum autoaggregation and coaggregationwere noted in case of Lipomyces starkeyi VIT-MN03, Saccharomycopsis fibuligeraVIT-MN04, and Brettanomyces custersianus VIT-MN05. In vitro toxicity assay was performed and all the yeast strains showednon-toxic nature.ConclusionFive yeast strains have been studied for their probiotic characteristics and identified at molecular level. Out offive yeast strains, three strains showed maximum adhesion ability,which is a prerequisite for colonization and protection of gastrointestinal tract. All the yeast strains are validated as a safe bioresources because of their non - hemolytic activities and non-production of urease. It can be concluded that the identified yeast strainscan serve as promising probiotics in various fields offood industry.


Author(s):  
Tchamba Mbiada Mervie Noël ◽  
Bouba Adji Mohammadou ◽  
Nodem Shanang Francky Steve ◽  
Léopold Ngoune Tatsadjieu ◽  
Mbarga Manga Joseph Arsene ◽  
...  

Background and Aim: Lactic acid bacteria (LAB) became a field of interest by scientists in recent years due to their technological and probiotic properties. The aim of this work was to study the technological and probiotic properties of LAB isolated from the bottle gourds (calabashes)of milk fermentation, in Mbéré, Cameroun. Methods: Five different bottle gourds from milk fermentation were collected and used for LAB isolation. These LABs were characterized using conventional cultural method, the technological (such as proteolytic, lipolytic activities) and probiotic properties (including acid and bile salt tolerance, cholesterol assimilation and antioxidant activities) were assessed. Results: From these samples, 30 LABs were isolated and among them, 21 exhibited great lipolytic and proteolytic activities with the maximum values of 18 and 29 mm respectively. In addition, 10 LAB isolates showed interesting antimicrobial activity against pathogens germs tested and good tolerance ability under acid and bile salt stress after 24h of incubation. Cholesterol assimilation and antioxidant tests revealed that isolated BC4 and BC3 have the greatest activity (35 and 39 mm respectively) while, BC4 and BL4 have the greatest antioxidant activity (IC50 = 0,15 and 0,13 respectively). Conclusion: LAB isolated from the bottle gourds (calabashes) of milk fermentation, in Mbéré, Cameroon can be used to develop dairy industry and manage the cardiovascular diseases.


2019 ◽  
Vol 84 (4) ◽  
pp. 365-376
Author(s):  
Gordana Zavisic ◽  
Sasa Petricevic ◽  
Slavica Ristic ◽  
Milena Rikalovic ◽  
Natasa Jovanovic-Ljeskovic ◽  
...  

The present study was dedicated to determining probiotic potential of a human isolate G-4, originated from meconium. The isolate was identified using morphological, physiological and biochemical assays and molecular method based on 16S rRNA gene sequencing. In order to evaluate its probiotic properties in vitro tests were performed: the survival in simulated gastrointestinal conditions, adhesion to hexadecane, and antimicrobial activity. Safety aspects of the isolate were examined by testing toxicity, gastrointestinal tolerance and bacterial translocation in vivo, as well as hemolytic activity in vitro. The isolate G-4, identified as Lactobacillus fermentum, showed viability in artificial gastric and intestinal juice (low degree of cell viability reduction for 0.69 and 1.30 logCFU mL-1 units, respectively), moderate adhesion to hexadecane (39?2.1 %), and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype Abony and Clostridium sporogenes, due to production of lactic acid (9.80 g L-1). No signs of toxicity, bacterial translocation, hemolytic activity, were observed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pilar Fernández-Pacheco ◽  
Inés María Ramos Monge ◽  
Mónica Fernández-González ◽  
Justa María Poveda Colado ◽  
María Arévalo-Villena

This work has evaluated the safety aspects of 20 yeast strains, isolated from food environments, selected in previous works due to their probiotic potential. Among the different strains, there are Saccharomyces and non-Saccharomyces yeasts. Before safety evaluation, differentiation of Saccharomyces cerevisiae strains was done by PCR amplification of inter-δ region with pairs of primers δ2-12 and δ12-21, which showed that they were all different from each other and also had different profiles to Saccharomyces boulardii (the only commercial probiotic yeast). The non-Saccharomyces ones were already known. The evaluation tests carried out were antibiotic and antifungal resistance, production of biogenic amines, deconjugation activity of bile salts, and different enzymatic activities: coagulase, deoxyribonuclease, hemolysin, proteolytic, and phospholipase. None of the studied strains demonstrated coagulase, hemolytic or DNase capacity (clear virulence factors), although all of them showed protease activity, some showed phospholipase activity, and half of the yeasts were capable of conjugating bile salts. Regarding antimicrobial compounds, all were resistant to antibiotics but showed sensitivity to the antimycotics used. Nevertheless, only one strain of Hanseniaspora osmophila was excluded for use in the food industry, due to its high production of tyramine.


Sign in / Sign up

Export Citation Format

Share Document