Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice

2018 ◽  
Vol 29 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Vijaykumar Sayeli ◽  
Jagan Nadipelly ◽  
Parimala Kadhirvelu ◽  
Binoy Varghese Cheriyan ◽  
Jaikumar Shanmugasundaram ◽  
...  

AbstractBackground:Peripheral neuropathy is the dose limiting side effect of many anticancer drugs. Flavonoids exhibit good antinociceptive effect in animal models. Their efficacy against different types of nociception has been documented. The present study investigated the effect of flavonol (3-hydroxy flavone), 3′,4′-dimethoxy flavonol, 6,3′-dimethoxy flavonol, 7,2′-dimethoxy flavonol and 7,3′-dimethoxy flavonol against paclitaxel-induced peripheral neuropathy in mice.Methods:A single dose of paclitaxel (10 mg/kg, i.p.) was administered to induce peripheral neuropathy in mice and the manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing Von Frey hair aesthesiometer test, acetone bubble test and hot water tail immersion test, respectively. The test compounds were prepared as a suspension in 0.5% carboxymethyl cellulose and were administered s.c. in various doses (25, 50, 100 and 200 mg/kg). The above behavioral responses were assessed prior to and 30 min after drug treatment. In addition, the effect of test compounds on proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and free radicals was investigated by using suitablein vitroassays.Results:A dose-dependent attenuation of tactile allodynia, cold allodynia and thermal hyperalgesia was evidenced in mice treated with flavonol derivatives. The test compounds inhibited TNF-α, IL-1β and free radicals in a concentration-dependent manner.Conclusions:These results revealed that flavonol and its dimethoxy derivatives ameliorated the manifestations of paclitaxel-induced peripheral neuropathy in mice. The inhibition of proinflammatory cytokines and free radicals could contribute to this beneficial effect.

2020 ◽  
Vol 73 (5) ◽  
pp. 434-444 ◽  
Author(s):  
Kyungmi Kim ◽  
Wonyeong Jeong ◽  
In Gu Jun ◽  
Jong Yeon Park

Background: Studies investigating the correlation between spinal adenosine A1 receptors and vincristine-induced peripheral neuropathy (VIPN) are limited. This study explored the role of intrathecal N6-(2-phenylisopropyl)-adenosine R-(-)isomer (R-PIA) in the rat model of VIPN. Methods: Vincristine (100 μg/kg) was intraperitoneally administered for 10 days (two 5-day cycles with a 2-day pause) and VIPN was induced in rats. Pain was assessed by evaluating mechanical hyperalgesia, mechanical dynamic allodynia, thermal hyperalgesia, cold allodynia, and mechanical static allodynia. Biochemically, tumor necrosis factor-alpha (TNF-α) level and myeloperoxidase (MPO) activity were measured in the tissue from beneath the sciatic nerve.Results: Vincristine administration resulted in the development of cold allodynia, mechanical hyperalgesia, thermal hyperalgesia, mechanical dynamic allodynia, and mechanical static allodynia. Intrathecally administered R-PIA (1.0 and 3.0 μg/10 μl) reversed vincristine-induced neuropathic pain (cold and mechanical static allodynia). The attenuating effect peaked 15 min after intrathecal administration of R-PIA after which it decreased until 180 min. However, pretreatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 μg/10 μl) 15 min before intrathecal R-PIA administration significantly attenuated the antiallodynic effect of R-PIA. This antiallodynic effect of intrathecal R-PIA may be mediated through adenosine A1 receptors in the spinal cord. Intrathecally administered R-PIA also attenuated vincristine-induced increases in TNF-α level and MPO activity. However, pretreatment with intrathecal DPCPX significantly reversed this attenuation.Conclusions: These results suggest that intrathecally administered R-PIA attenuates cold and mechanical static allodynia in a rat model of VIPN, partially due to its anti-inflammatory actions.


Author(s):  
Parimala Kathirvelu ◽  
Jagan Nadipelly ◽  
Vijaykumar Sayeli ◽  
Viswanathan Subramanian ◽  
Jaikumar Shanmugasundaram ◽  
...  

Introduction: Therapy with anticancer drugs like paclitaxel, platinum complexes and vincristine result in severe peripheral neuropathy. Very few treatment options are available to overcome this debilitating side effect. Flavone and its monohydroxy derivatives have been proved to possess anti-nociceptive and anti-inflammatory effects in animal models. Aim: To investigate flavone, 5-hydroxy flavone, 6-hydroxy flavone and 7-hydroxy flavone for their effect on neuropathy induced by vincristine and oxaliplatin in mice. Materials and Methods: In this experimental animal study, neuropathy was induced in mice by multiple doses of vincristine or a single dose of oxaliplatin. The manifestations of mechanical allodynia, cold allodynia and thermal hyperalgesia were measured by von Frey’s hair aesthesiometer, acetone spray test and hot water tail immersion test. The data was subjected to ANOVA followed by Dunnett’s test for multiple comparison and paired t-test at appropriate places. Results: Flavone and monohydroxy flavones significantly reduced the paw withdrawal response scores due to mechanical allodynia and cold allodynia resulting from vincristine or oxaliplatin administration (p<0.05). The tail withdrawal latency due to thermal hyperalgesia was also significantly increased by different flavone derivatives (p<0.05). However, 7-hydroxy flavone was ineffective in oxaliplatin-induced mechanical allodynia and vincristine induced thermal hyperalgesia. Analysis of the results indicated that the manifestations of neuropathy induced by vincristine or oxaliplatin were amenable to treatment with flavone derivatives in the following order; cold allodynia>thermal hyperalgesia>mechanical allodynia. Opioid mediated antinociceptive effect, interaction with cation channels and anti-inflammatory effect of the investigated flavones may be suggested as possible mechanisms for their beneficial effects in neuropathy due to chemotherapeutic agents. Conclusion: Various neuropathic manifestations induced by vincristine and oxaliplatin were effectively attenuated by flavone and monohydroxy flavones.


Author(s):  
CHANDANA CHOUDHURY BARUA ◽  
S. M. ABDUL AZIZ BARBHUIYA ◽  
LIPIKA BURAGOHAIN ◽  
AJAY KAKATI ◽  
ACHEENTA GOHAIN BARUA

Objective: To investigate the analgesic activity of methanolic extract of Entada phaseoloides (MEEP) along with its molecular mechanistic pathway. Methods: Swiss albino female mice and Wistar rats of either sex were administered orally with MEEP extracts (100, 200 and 400 mg/kg) and pentazocine, tramadol and diclofenac sodium, as standard drugs. Following administration, anti-nociceptive activity was evaluated using an acetic acid-induced writhing test, Eddy’s hot plate, and hot water immersion test. Serum was collected for molecular expression of various proteins and genes using Reverse Transcriptase PCR and Western Blotting. Results: Acetic acid writhing test, a frequently used method to assess peripheral analgesic activity, revealed that MEEP reduced peripherally induced pain in a dose-dependent manner. Likewise, Eddy’s hot plate and hot water immersion methods, often implicated for testing central analgesic activities, showed that MEEP is bestowed with the capability to counteract analgesia in a dose and time-dependent manner. Pro-inflammatory cytokines and factors like COX-2, IL-6, TNF-α, and NF-κB that cause inflammatory responses and pain were significantly reduced, suggesting its analgesic and anti-inflammatory potential. This analgesic and the anti-inflammatory role played by MEEP is also supported by the up-regulation of anti-inflammatory cytokine IL-10 and COMT and COX-1 enzyme demonstrated no significant difference between the groups. Conclusion: The study revealed the weak peripheral and potent central analgesic property MEEP by modulating pro-inflammatory and anti-inflammatory pathways.


2020 ◽  
Vol 48 (10) ◽  
pp. 030006052096399
Author(s):  
Guixiang Liao ◽  
Zhihong Zhao ◽  
Hongli Yang ◽  
Xiaming Li

Objective Sirtuin 3 (SIRT3) plays a vital role in regulating oxidative stress in tissue injury. The aim of this study was to evaluate the radioprotective effects of honokiol (HKL) in a zebrafish model of radiation-induced brain injury and in HT22 cells. Methods The levels of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) were evaluated in the zebrafish brain and HT22 cells. The expression levels of SIRT3 and cyclooxygenase-2 (COX-2) were measured using western blot assays and real-time polymerase chain reaction (RT-PCR). Results HKL treatment attenuated the levels of ROS, TNF-α, and IL-1β in both the in vivo and in vitro models of irradiation injury. Furthermore, HKL treatment increased the expression of SIRT3 and decreased the expression of COX-2. The radioprotective effects of HKL were achieved via SIRT3 activation. Conclusions HKL attenuated oxidative stress and pro-inflammatory responses in a SIRT3-dependent manner in radiation-induced brain injury.


2007 ◽  
Vol 292 (5) ◽  
pp. G1429-G1438 ◽  
Author(s):  
Takashi Ohama ◽  
Masatoshi Hori ◽  
Eiichi Momotani ◽  
Yoichiro Iwakura ◽  
Fengling Guo ◽  
...  

Motility disorders are frequently observed in intestinal inflammation. We previously reported that in vitro treatment of intestinal smooth muscle tissue with IL-1β decreases the expression of CPI-17, an endogenous inhibitory protein of smooth muscle serine/threonine protein phosphatase, thereby inhibiting contraction. The present study was performed to examine the pathophysiological importance of CPI-17 expression in the motility disorders by using an in vivo model of intestinal inflammation and to define the regulatory mechanism of CPI-17 expression by proinflammatory cytokines. After the induction of acute ileitis with 2,4,6,-trinitrobenzensulfonic acid, CPI-17 expression declined in a time-dependent manner. This decrease in CPI-17 expression was parallel with the reduction of cholinergic agonist-induced contraction of smooth muscle strips and sensitivity of permeabilized smooth muscle fibers to Ca2+. Among the various proinflammatory cytokines tested, TNF-α and IL-1β were observed to directly inhibit CPI-17 expression and contraction in cultured rat intestinal tissue. Moreover, both TNF-α and IL-1β inhibited CPI-17 expression and contraction of smooth muscle tissue isolated from wild-type and IL-1α/β double-knockout mice. However, IL-1β treatment failed to inhibit CPI-17 expression and contraction in TNF-α knockout mice. In β-escin-permeabilized ileal tissues, pretreatment with anti-phosphorylated CPI-17 antibody inhibited the carbachol-induced Ca2+ sensitization in the presence of GTP. These findings suggest that CPI-17 was downregulated during intestinal inflammation and that TNF-α plays a central role in this process. Downregulation of CPI-17 may play a role in motility impairments in inflammation.


2009 ◽  
Vol 87 (11) ◽  
pp. 963-972 ◽  
Author(s):  
Diethart Schmid ◽  
Florian Woehs ◽  
Martin Svoboda ◽  
Theresia Thalhammer ◽  
Peter Chiba ◽  
...  

Cimicifuga racemosa (black cohosh) is commonly used in traditional medicines as treatment for menopausal symptoms and as an antiinflammatory remedy. To clarify the mechanism of action and active principle for the antiinflammatory action, the effects of aqueous C. racemosa root extracts (CRE) and its major constituents on the release of the proinflammatory cytokines IL-6, TNF-α, IFN-γ, and the chemokine IL-8 were investigated in lipopolysaccharide (LPS)-stimulated whole blood of healthy volunteers. CRE (3 µg/µL and 6 µg/µL) reduced LPS-induced release of IL-6 and TNF-α in a concentration- and time-dependent manner and almost completely blocked release of IFN-γ into the plasma supernatant. Except for IFN-γ, these effects were attenuated at longer incubation periods. IL-8 secretion was stimulated by CRE. As shown by quantitative real-time RT-PCR, effects on cytokines were based on preceding changes in mRNA levels except for IL-8. According to their content in CRE, the phenolcarboxylic compounds caffeic acid, ferulic acid, and isoferulic acid, as well as the triterpene glycosides 23-epi-26-deoxyactein and cimigenol-3-O-xyloside, were tested at representative concentrations. Among these, isoferulic acid was the prominent active principle in CRE, responsible for the observed inhibition of IL-6, TNF-α, and IFN-γ, but not for IL-8 stimulation. The effect of this compound may explain the antiinflammatory activities of CRE and its beneficial actions in rheumatism and other inflammatory diseases.


2010 ◽  
Vol 298 (4) ◽  
pp. C929-C941 ◽  
Author(s):  
Nilesh M. Dagia ◽  
Gautam Agarwal ◽  
Divya V. Kamath ◽  
Anshu Chetrapal-Kunwar ◽  
Ravindra D. Gupte ◽  
...  

A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-α, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-κB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-κB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110α/γ PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-κB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-α and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.


2001 ◽  
Vol 69 (11) ◽  
pp. 6912-6922 ◽  
Author(s):  
Annette Kolb-Mäurer ◽  
Alexandra Unkmeir ◽  
Ulrike Kämmerer ◽  
Claudia Hübner ◽  
Thomas Leimbach ◽  
...  

ABSTRACT Infection with Neisseria meningitidis serogroup B is responsible for fatal septicemia and meningococcal meningitis. The severity of disease directly correlates with the production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, and IL-8. However, the source of these cytokines has not been clearly defined yet. Since bacterial infection involves the activation of dendritic cells (DCs), we analyzed the interaction of N. meningitidis with monocyte-derived DCs. Using N. meningitidis serogroup B wild-type and unencapsulated bacteria, we found that capsule expression significantly impaired neisserial adherence to DCs. In addition, phagocytic killing of the bacteria in the phagosome is reduced by at least 10- to 100-fold. However, all strains induced strong secretion of proinflammatory cytokines TNF-α, IL-6, and IL-8 by DCs (at least 1,000-fold at 20 h postinfection [p.i.]), with significantly increased cytokine levels being measurable by as early as 6 h p.i. Levels of IL-1β, in contrast, were increased only 200- to 400-fold at 20 h p.i. with barely measurable induction at 6 h p.i. Moreover, comparable amounts of cytokines were induced by bacterium-free supernatants of Neisseria cultures containing neisserial lipooligosaccharide as the main factor. Our data suggest that activated DCs may be a significant source of high levels of proinflammatory cytokines in neisserial infection and thereby may contribute to the pathology of meningococcal disease.


2021 ◽  
Author(s):  
Semiha Orhan ◽  
Kemal Yetıs Gulsoy ◽  
Esra Orenlili Yaylagul ◽  
Halit Bugra Koca ◽  
Lutfi Yavuz ◽  
...  

Abstract Background: The development of sepsis, the low efficacy of antibiotics used, long-term antibiotic use, and the development of resistance to antibiotics are significant problems in patients in intensive care units. The use of biological markers is promising for the diagnosis and treatment of sepsis. In this study, proinflammatory cytokines, procalcitonin and four miRNA expressions were analyzed in a time-dependent manner in a patient group and control group, and the correlations between them were examined.Material and Method: The study included 30 patients in the intensive care unit who were diagnosed with sepsis and applied with SOFA and APACHE-2 scoring and 30 control subjects. Serum samples were taken at 24 hours, 72 hours, and on the 7th day. Analyses according to time were made of interleukin-1 beta, interleukin-6, interleukin-10, TNF-alpha, procalcitonin and four miRNAs (miR-122, miR-146a, miR-150, and miR-223) in the collected samples and comparisons were made between the patients and the control group. Results: At 24 hours, a decrease was observed in the miRNA-146a, miRNA-150, and miRNA-122 values and an increase in the miRNA-223 values in the sepsis group compared to the control group. At 72 hours, a decrease was observed in the miRNA-146a, miRNA-150, miRNA-122, and miRNA-223 values in the sepsis group compared to the control group.Conclusion: When procalcitonin and inflammatory cytokines were compared with selected miRNAs in the diagnosis, treatment follow-up, and prognosis of sepsis in the intensive care unit, a correlation between procalcitonin levels, proinflammatory cytokines and miRNA-150, miRNA-146a, and miRNA-223 was found.


2003 ◽  
Vol 47 (12) ◽  
pp. 3704-3707 ◽  
Author(s):  
Jung-Hyun Choi ◽  
Min-Jin Song ◽  
Seung-Han Kim ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
...  

ABSTRACT The effects of moxifloxacin, a new methoxyfluoroquinolone, on the production of proinflammatory cytokines from human peripheral blood mononuclear cells (PBMCs) were evaluated. Moxifloxacin inhibited the production of tumor necrosis factor alpha (TNF-α) and/or interleukin-6 (IL-6) by PBMCs stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), and heat-killed bacteria in a concentration-dependent manner without cytotoxic effects. The addition of moxifloxacin reduced the population of cells positive for CD-14 and TNF-α and for CD-14 and IL-6 among the LPS- or LTA-stimulated PBMCs. By Western blot analysis, moxifloxacin pretreatment reduced the degradation of IκBα in LPS-stimulated PBMCs. In conclusion, moxifloxacin could interfere with NF-κB activation by inhibiting the degradation of IκBα and reduce the levels of production of proinflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document