scholarly journals The tribological properties of Al-brasses in various environments

2017 ◽  
Vol 61 (3) ◽  
pp. 91-94
Author(s):  
M. Lovíšek ◽  
T. Liptáková ◽  
J. Bronček ◽  
S. Dundeková

Abstract Tribological properties of Al-brass pipes of various producers were studied in different environments. The tested brasses have very similar chemical composition, but they differ in microstructure due to mainly by heat treatment after cold drawing. Microstructure as well as roughness of surface influence chemical and mechanical properties which are important in operating conditions. The experiments of tribological behavior were made in various environments, dry air, cooling treated water and 3.5 % solution of NaCl at room temperature 21 ± 2°C. The tribological tests were carried out on the Linear Tribometer at normal loading 5 N by the method ball on plate for the duration of 5500 s. The measured friction coefficients were evaluated by the program DIAdem and the diagrams were created from signal generated by software NSignal Express

2013 ◽  
Vol 668 ◽  
pp. 3-8 ◽  
Author(s):  
Jian Rong Sun ◽  
Chang Sheng Li ◽  
Hua Tang ◽  
Zhi Cheng Guo ◽  
Jin Ying Zi Liu

The composites of Ni-W-Cr-Fe-Cu-MoS2-Graphite with nano-MoS2 were prepared by powder metallurgy. Its tribological properties were investigated using the UTM-2 Nano+Micro Tribometer from room temperature to 600°C. The effects of amount of MoS2 and Ni-W-Cr prealloy powder, load, and temperature on the tribological properties were investigated and discussed. The results indicated that the addition of 43~45wt.% Ni-W-Cr prealloy powder had a strengthening effect on the hardness, anti-press and tensile strength. The tensile strength of the composite decreases with the addition of Nano-MoS2 and graphite, and the friction coefficient decrease with increase of the additives over the wide temperature range of 25°C∼600°C. The friction coefficients and wear rates of the composites reach the optimization value at 2.5wt.% MoS2,While its wear rates increase with the increasing temperature and load.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haizhong Wang ◽  
Zenghong Song ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
Jinjun Lu

The tribological performance of Si3N4ball sliding against Ti3SiC2disc lubricated by lithium-based ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT) and elevated temperature (100°C). Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (L-F106) were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2contacts. [Li(urea)]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.


2020 ◽  
Author(s):  
Yunzhong Wang ◽  
Saixing Tang ◽  
Yating Wen ◽  
Shuyuan Zheng ◽  
Bing Yang ◽  
...  

<div>Persistent room-temperature phosphorescence (p-RTP) from pure organics is attractive </div><div>due to its fundamental importance and potential applications in molecular imaging, </div><div>sensing, encryption, anticounterfeiting, etc.1-4 Recently, efforts have been also made in </div><div>obtaining color-tunable p-RTP in aromatic phosphors5 and nonconjugated polymers6,7. </div><div>The origin of color-tunable p-RTP and the rational design of such luminogens, </div><div>particularly those with explicit structure and molecular packing, remain challenging. </div><div>Noteworthily, nonconventional luminophores without significant conjugations generally </div><div>possess excitation-dependent photoluminescence (PL) because of the coexistence of </div><div>diverse clustered chromophores6,8, which strongly implicates the possibility to achieve </div><div>color-tunable p-RTP from their molecular crystals assisted by effective intermolecular </div><div>interactions. Here, inspirited by the highly stable double-helix structure and multiple </div><div>hydrogen bonds in DNA, we reported a series of nonconventional luminophores based on </div><div>hydantoin (HA), which demonstrate excitation-dependent PL and color-tunable p-RTP </div><div>from sky-blue to yellowish-green, accompanying unprecedentedly high PL and p-RTP </div><div>efficiencies of up to 87.5% and 21.8%, respectively. Meanwhile, the p-RTP emissions are </div><div>resistant to vigorous mechanical grinding, with lifetimes of up to 1.74 s. Such robust, </div><div>color-tunable and highly efficient p-RTP render the luminophores promising for varying </div><div>applications. These findings provide mechanism insights into the origin of color-tunable </div><div>p-RTP, and surely advance the exploitation of efficient nonconventional luminophores.</div>


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
M. M. A. Baig ◽  
M. Abdul Samad

Epoxy composite coating systems generally find their usage in applications such as, fluid handling systems to protect components from corrosive media. However, their use in demanding tribological applications such as, in sliding components of machines, are known to be limited. This is often attributed to their low load bearing capacity combined with poor thermal stability under severe p-v regimes. Researchers have tried to enhance the tribological properties of the epoxy coatings using a combination of several types of micro/nano sized fillers to produce composite or hybrid composite coatings. Hence, this review paper aims to focus on the recent advances made in developing the epoxy coating systems. Special attention would be paid to the types and properties of nano-fillers that have been commonly used to develop these coatings, different dispersion techniques adopted and the effects that each of these fillers (and their combinations) have on the tribological properties of these coatings.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 669
Author(s):  
Wojciech Szkliniarz ◽  
Agnieszka Szkliniarz

This paper presents the chemical and phase composition, microstructure, and selected properties both at room temperature and at the temperature corresponding to the expected operating conditions of three successive generations of TiAl-based alloys (Ti-47Al-2W-0.5Si, Ti-45Al-8Nb-0.5(B,C), and Ti-45Al-5Nb-2Cr-1Mo-0.5(B,C)-0.2Si) melted in a vacuum induction furnace with high-density isostatic pressed graphite crucibles. The obtained results of mechanical and physical properties of the produced alloys were compared to the properties of reference alloys with similar chemical composition and melted in a cold copper crucible furnace. The effect of increased carbon content in the produced alloys due to the degradation of the graphite crucible during melting is higher strength properties, lower plastic properties, higher coefficient of thermal expansion, and improved creep resistance. It was shown that the proposed technology could be successfully used in the production of different generation TiAl-based intermetallic alloys.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 884
Author(s):  
Andrzej Borawski

Braking systems have a direct impact on the safety of road users. That is why it is crucial that the performance of brakes be dependable and faultless. Unfortunately, the operating conditions of brakes during their operating time are affected by many variables, which results in changes in their tribological properties. This article presents an attempt to develop a methodology for studying how the operating time affects the value of the coefficient of friction and the abrasive wear factor. The Taguchi method of process optimization was used to plan the experiment, which was based on tests using the ball-cratering method. The results clearly show that the degree of wear affects the properties of the friction material used in the production process of brakes.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


2009 ◽  
Vol 37 (1) ◽  
pp. 31-41 ◽  
Author(s):  
K. Delbé ◽  
P. Thomas ◽  
D. Himmel ◽  
J. L. Mansot ◽  
M. Dubois ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 34-40
Author(s):  
Hua Tang ◽  
Wen Jing Li ◽  
Chang Sheng Li

The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were prepared using powder metallurgic method. The crystal structure and morphology of the as-synthesized samples were characterized by XRD and SEM. The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were found to compose of superconductor phase and Ag phase. The tribological properties from ultra-low temperature to room temperature of the composites were studied by pin-on-disk friction test. It was found that the friction coefficients of pure YBa2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox(BSCCO) were both dropped abruptly when the temperature cooled below the superconducting transition temperature. At room temperature, the friction coefficient of pure YBa2Cu3Oxis 0.68~0.95, when mixing 15wt% Ag, the friction coefficient of the sample decreased to the lowest value 0.11. The friction coefficient of pure Bi2Sr2CaCu2Ox is 0.15~0.17, When Ag content reach 10wt%, the coefficient was lowest (average value is 0.13). The addition of appropriate amount of Ag obviously improve the tribological property of YBCO, while only slightly meliorate that of BSCO. On the other hand, the YBCO/Ag composites exhibit better tribological properties than BSCCO/Ag composites at higher load under the same experimental condition.


Sign in / Sign up

Export Citation Format

Share Document