scholarly journals Microstructural evolution and properties of Cu–20 wt% Ag alloy wire by multi-pass continuous drawing

2020 ◽  
Vol 9 (1) ◽  
pp. 1359-1367
Author(s):  
Chu Cheng ◽  
Kexing Song ◽  
Xujun Mi ◽  
Baoan Wu ◽  
Zhu Xiao ◽  
...  

Abstract The Cu–20 wt% Ag alloy wire rod was prepared using three-chamber vacuum cold mold vertical continuous up-casting followed by multi-pass continuous drawing. The evolution of microstructure, mechanical property, and electrical property of the Cu–20 wt% Ag alloy wire during multi-pass continuous drawing was studied. After multi-pass continuous drawing, the continuous network eutectic structure in the longitudinal section of the as-casted rod was gradually drawn into long fibers that approximately parallel to the axial direction, while the space of the continuous network eutectic structure in the transverse section is getting smaller and smaller. Both the preferred orientation of copper and silver grains are (1,1,1). With the increase of drawing strain (η), the tensile strength of Cu–20 wt% Ag alloy wire gradually increases while the elongation gradually decreases. When the diameter is drawn to 0.02 mm (η = 11.94), the tensile strength of the alloy is 1,682 MPa and elongation is 2.0%. The relationship between tensile strength, elongation, and diameter conforms to Allometric and Boltzmann functions, respectively.

2021 ◽  
Vol 1035 ◽  
pp. 57-62
Author(s):  
Guo Qiang Shang ◽  
Li Ping Li ◽  
Xin Nan Wang

In present study, the effects of different welding wires on the evolution of microstructure and mechanical properties of TC4 titanium alloy test plates were studied. The results show that the test plates welded by TA20 titanium alloy wire, TC3 titanium alloy wire and TC4 titanium alloy wire are well formed, no defects are found in the cross section of the weld. The microstructures of these test plates are similar, and needle-like martensite exists in the weld area. In comparison, this is little obvious difference in tensile strength among these test plates welded by different welding wires, while the plates welded by TC4 titanium alloy has better elongation, contraction of aera, impact toughness and better balance of strength and toughness.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2016 ◽  
Vol 47 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Xudong Yang ◽  
Xiuting Jiang ◽  
Jiyong Hu ◽  
Fangjuan Wang ◽  
Chun Hu

To estimate the photo-oxidation aging performance of PVC-coated membrane material in atmospheric conditions under tensile stresses, the relationship between physical and mechanical properties under accelerated weathering test and outdoor weathering test is studied with the same cumulative UV radiation energy. And then, both tensile strength and whiteness index were measured and compared to characterize the property change of membrane material after aging under four different tensile stresses (0%, 5%, 10% and 20% of the breaking strength), respectively. In addition, FTIR spectrometry was applied to characterize the chemical components of the samples under different weathering conditions, and the carbonyl index was extracted. The results show that there were significant differences of tensile strength and carbonyl index between two kinds of aging conditions, whereas with the increasing tensile stresses, the whiteness index represented a consistent increasing deviation of accelerated weathering from the outdoor weathering. However, the relationship have been built between both whiteness index and tensile strength retention of accelerated weathering and those of outdoor weathering conditions after a Schwarzschild’s modification. Therefore, the service lifespan of PVC-coated membrane materials can be evaluated by accelerated weathering tests under tensile stresses.


2010 ◽  
Vol 1276 ◽  
Author(s):  
F. García-Vázquez ◽  
I. Guzmán-Flores ◽  
A. Garza ◽  
J. Acevedo

AbstractBrazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.


2021 ◽  
Vol 36 (1) ◽  
pp. 111-119
Author(s):  
Behzad Jafari Mohammadabadi ◽  
Kourosh Shahriar ◽  
Hossein Jalalifar ◽  
Kaveh Ahangari

Rocks are formed from particles and the interaction between those particles controls the behaviour of a rock’s mechanical properties. Since it is very important to conduct extensive studies about the relationship between the micro-parameters and macro-parameters of rock, this paper investigates the effects of some micro-parameters on strength properties and the behaviour of cracks in rock. This is carried out by using numerical simulation of an extensive series of Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. The micro-parameters included the particles’ contact modulus, the contact stiff ness ratio, bond cohesion, bond tensile strength, the friction coefficient and the friction angle, and the mechanical properties of chromite rock have been considered as base values of the investigation. Based on the obtained results, it was found that the most important micro-parameters on the behaviour of rock in the compressive state are bond cohesion, bond tensile strength, and the friction coefficient. Also, the bond tensile strength showed the largest effect under tensile conditions. The micro-parameter of bond tensile strength increased the rock tensile strength (up to 5 times), minimized destructive cracks and increased the corresponding strain (almost 2.5 times) during critical stress.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012074
Author(s):  
Weixin Yu ◽  
Zhen Dai ◽  
Jifeng Zhao ◽  
Lulu Fang ◽  
Yiwen Zhang

Abstract The strength of P92 steel (tensile strength, specified plastic elongation strength) will decrease after its hardness is reduced, ferrite and carbides forming the structure. Carbides of grain size 5-6 are precipitated in the grains and grain boundaries. The martensite lath shape has completely disappeared. M23C6 carbide coarsened obviously, with a maximum size of about 500nm; The Laves phase is also aggregated and coarsened, connecting in a chain shape with a maximum size of more than 500nm. Evolution of microstructure, namely the obvious coarsening of M23C6 carbides and the aggregation and connection of Laves phases in a chain shape, are the main causes for rapid decrease in the stability of the material substructure and evident decline in mechanical properties and hardness. In addition, the MX phase did not change significantly, hardly affecting the hardness reduction of P92 steel.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5975
Author(s):  
Jae-Hwan Kim ◽  
Jong-Min Jung ◽  
Hyunbo Shim

The tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si alloys were investigated. The martensitic transformation was identified, including surface relief with a specific orientation and partial intersection. Besides, as the cold rolling degree increased, the volume fraction of ε-martensite increased, whereas α’-martensite started to form at the cold rolling degree of 15% and slightly increased to 6% at the maximum cold rolling degree. This difference may be caused by high austenite stability by adding alloying elements (Mn and Ni). As the cold rolling degree increased, the tensile strength linearly increased, and the elongation decreased due to the fractional increment in the volume of martensite. However, the damping capacity increased until a 30% cold rolling degree was approached, and then decreased. The irregular tendency of the damping capacity was confirmed, depicting that it increased to a specific degree and then decreased as the tensile strength and elongation increased. Concerning the relationship between the tensile properties and the damping capacity, the damping capacity increased and culminated, and then decreased as the tensile properties and elongation increased. The damping capacity in the high-strength area tended to decrease because it is difficult to dissipate vibration energy into thermal energy in alloys with high strength. In the low-strength area, on the other hand, the damping capacity increased as the strength increased since the increased volume fraction of ε-martensite is attributed to the increase in the damping source.


Author(s):  
T.M. Azeez ◽  
Lateef O. Mudashiru ◽  
T.B. Asafa ◽  
A.A. Adeleke ◽  
Peter Pelumi Ikubanni

Mechanical properties of extruded aluminum are known to significantly depend on the process parameters such as temperature, numbers of extrusion pass and extrusion load among others. This implies that these properties can be influenced by tuning the process parameters. Herein, the effects of these parameters on the tensile strength and hardness of aluminum 6063 series were investigated by using equal channel angular extrusion (ECAE). Experiments were designed using Design Expert software. Analysis of variance (ANOVA) was then used to investigate the main and interactions effects of the process parameters. An empirical mathematical model was generated that shows the relationship between the input and output variables using response surface methodology. Temperature was found to be the most significant factor while extrusion load was the least factor that influenced the hardness and tensile strength which were the output factors. There was a significant increase in tensile strength and hardness after extrusion at different mix of factors. The optimum input variable was discovered at 1020.58 kN, 489.67°C and 3 numbers of extrusion passes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Atin Sumihartati ◽  
Wiah Wardiningsih ◽  
Naelly Al Kautsar ◽  
Muhammad Permana ◽  
Samuel Pradana ◽  
...  

Purpose The purpose of this study is to explore the potential of Cordyline Australis fibers as an alternate raw material for textile. Design/methodology/approach The water retting method was used to extract the fiber. Cordyline Australis fibers were characterized in terms of the morphology of fibers (fiber cross-sectional and longitudinal), fiber chemical functional groups, tensile strength and elongation, fineness, fiber length, moisture regain and friction coefficient. Findings Cordyline Australis fiber strands consist of several individual fibers. At the longitudinal section, the fiber cells appeared as long cylindrical tubes with a rough surface. The cross-section of the Cordyline Australis fibers was irregular but some were oval. The key components in the fibers were cellulose, hemicellulose and lignin. The tensile strength of the fiber per bundle was 2.5 gf/den. The elongation of fibers was 13.15%. The fineness of fiber was 8.35 Tex. The average length of the fibers was 54.72 cm. Moisture Regain for fiber was 8.59%. The friction coefficient of fibers was 0.16. The properties of the fiber showed that the Cordyline Australis fiber has the potential to be produced into yarn. Originality/value To the best of the author's knowledge, there is no scientific article focused on the Cordyline Australis fibers. Natural fibers from the leaves of the Cordyline Australis plant could be used as an alternate material for textile.


Sign in / Sign up

Export Citation Format

Share Document