scholarly journals Changes of historical metadata reflected in the wind parameters at Iași meteorological station

2017 ◽  
Vol 11 (1) ◽  
pp. 109-116
Author(s):  
Tudorache George-Stelian ◽  
Ionac Nicoleta ◽  
Maco Bogdan ◽  
Manea Ancuța

Abstract The metadata are defined as the informations behind the data. The purpose of the metadata in meteorological activity is to represent where, when, how and by whom meteorological data has been obtained, colected and recorded. Ideally, a comprehensive metadata base should contain records of all changes that have occured throughout the entire period in which the meteorological station has functioned, the so called „station history”. This paper renders the preliminary results of the analysed wind parameter values (percentages of wind calm and wind frequency) for the time period between 1961 and 2015 at Iași meteorological station. The data were analysed based on various historical metadata information (e.g. the emergence of new construction(s) around the station, relocation of the station, changes in the equipment used to measure the wind etc.), information that may influence the wind parameters measured at Iași weather station.

2007 ◽  
Vol 38 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Pratap Singh ◽  
Umesh K. Haritashya ◽  
Naresh Kumar

In spite of the vital role of high altitude climatology in melting of snow and glaciers, retreat or advancement of glaciers, flash floods, erosion and sediment transport, etc., weather conditions are not much studied for the high altitude regions of Himalayas. In this study, a comprehensive meteorological analysis has been made for the Gangotri Meteorological Station (Bhagirathi Valley, Garhwal Himalayas) using data observed for four consecutive melt seasons (2000–2003) covering a period from May to October for each year. The collected meteorological data includes rainfall, temperature, wind speed and direction, relative humidity, sunshine hours and evaporation. The results and their distribution over the different melt seasons were compared with available meteorological records for Dokriani Meteorological Station (Dingad Valley, Garhwal Himalayas) and Pyramid Meteorological Station (Khumbu Valley, Nepal Himalayas). The magnitude and distribution of temperature were found to be similar for different Himalayan regions, while rainfall varied from region to region. The influence of the monsoon was meagre on the rainfall in these areas. July was recorded to be the warmest month for all the regions and, in general, August had the maximum rainfall. For all the stations, daytime up-valley wind speeds were 3 to 4 times stronger than the nighttime down-valley wind speeds. It was found that the Gangotri Glacier area experienced relatively low humidity and high evaporation rates as compared to other parts of the Himalayas. Such analysis reveals the broad meteorological characteristics of the high altitude areas of the Central Himalayan region.


Author(s):  
Saurabh Mahajan ◽  
Ravi Devarakonda ◽  
Gautam Mukherjee ◽  
Nisha Verma ◽  
Kumar Pushkar

Background: Coronaviruses are a family of viruses that can result in different types of illnesses, most commonly, as Severe acute respiratory syndrome (SARS). Researches have shown that the atmospheric variables and the density of population have affected the transmission of the disease. Meteorological variables like temperature, humidity among others have found to affect the rise of pandemic in positive or negative ways.  Respiratory virus illnesses have shown seasonal variability since the time they have been discovered and managed. This study investigated the relationship between the meteorological variables of temperature, humidity and precipitation in the spread of COVID-19 disease in the city of Pune.Methods: This record based descriptive study is conducted after secondary data analysis of number of new cases of COVID-19 per day from the period 01 May to 24 December 2020 in Pune. Meteorological data of maximum (Tmax), minimum (Tmin) and daily average temperature (Tavg), humidity and precipitation were daily noted from Indian meteorological department website. Trend was identified plotting the daily number of clinically diagnosed cases over time period. Pearson’s correlation was used to estimate association between meteorological variables and daily detected fresh cases of COVID-19 disease.  Results: Analysis revealed significant negative correlation (r=-0.3563, p<0.005) between daily detected number of cases and maximum daily temperature. A strong positive correlation was seen between humidity and daily number of cases (r=0.5541, p<0.005).Conclusions: The findings of this study will aid in forecasting epidemics and in preparing for the impact of climate change on the COVID epidemiology through the implementation of public health preventive measures.


2020 ◽  
Vol 4 (1) ◽  
pp. 15-22
Author(s):  
Muhammad Taqui ◽  
Jabir Hussain Syed ◽  
Ghulam Hassan Askari

Pakistan’s largest city, Karachi, which is industrial centre and economic hub needs focus in research and development of every field of Engineering, Science and Technology. Urbanization and industrialization is resulting bad weather conditions which prolongs until a climate change. Since, Meteorology serves as interdisciplinary field of study, an analytical study of real and region-specific meteorological data is conducted which focuses on routine, extreme and engineering meteorology of metropolitan city Karachi. Results of study endorse the meteorological parameters relationship and establish the variability of those parameters for Karachi Coastal Area. The rise of temperature, decreasing trend of atmospheric pressure, increment in precipitation and fall in relative humidity depict the effects of urbanization and industrialization. The recorded extreme maximum temperature of 45.50C (on June 11, 1988) and the extreme minimum temperature of 4.5 0C(on January 1, 2007) is observed at Karachi south meteorological station. The estimated temperature rise in 32 years is 0.9 0C, which is crossing the Intergovernmental Panel on Climate Change (IPCC) predicted/estimated limit of 2oC rise per century. The maximum annual precipitation of 487.0mm appearing in 1994 and the minimum annual precipitation of 2.5mm appearing in 1987 is observed at same station which is representative meteorological station for Karachi Coast. Further Engineering meteorological parameters for heating ventilation air condition (HVAC) system design for industrial purpose are deduced as supporting data for coastal area site study for industrial as well as any follow-up engineering work in the specified region.


1997 ◽  
Vol 24 ◽  
pp. 203-210 ◽  
Author(s):  
Kevin M. Fleming ◽  
Julian A. Dowdeswell ◽  
Johannes Oerlemans

An energy-balance model is used to calculate mass balance and equilibrium-line altitudes (ELAs) on two northwest Spitsbergen glaciers, Austre Brøggerbreen and Midre Lovénbreen, whose mass balances are at present negative, and for which greater than 20 year records of mass-balance data are available. The model takes meteorological data, ice-mass area distribution with altitude, and solar radiation as inputs. Modelling uses mean daily meteorological data from a nearby weather station, adjusted for altitude. Average net balances modelled for 1980–89 using models tuned to the decade’s average were –0.44 and –0.47 m w.e. for Lovénbreen and Brøggerbreen, respectively, compared with the measured averages of –0.27 and –0.36 m. Sensitivity tests on glacier response to greenhouse warming predict a net balance change of –0.61 m year–1 per °C temperature rise relative to today, and a rise in ELA of 90 m °C–1. Modelling of Little lee Age conditions in Spitsbergen suggests that a 0.6°C cooling or a precipitation increase of 23% would yield zero net mass balance for Lovénbreen and that further cooling would increase net balance by 0.30 m year–1 °C–1. Set in the context of similar modelling of southern Norwegian, Alpine and Greenland ice masses, these results support the suggestion that glaciers with a maritime influence (i.e. higher accumulation) are most sensitive to climate change, implying a gradient towards decreasing sensitivity as accumulation decreases eastward and with altitude in Svalbard.


2020 ◽  
Vol 12 (17) ◽  
pp. 6788 ◽  
Author(s):  
Eva Lucas Segarra ◽  
Germán Ramos Ruiz ◽  
Vicente Gutiérrez González ◽  
Antonis Peppas ◽  
Carlos Fernández Bandera

The use of building energy models (BEMs) is becoming increasingly widespread for assessing the suitability of energy strategies in building environments. The accuracy of the results depends not only on the fit of the energy model used, but also on the required external files, and the weather file is one of the most important. One of the sources for obtaining meteorological data for a certain period of time is through an on-site weather station; however, this is not always available due to the high costs and maintenance. This paper shows a methodology to analyze the impact on the simulation results when using an on-site weather station and the weather data calculated by a third-party provider with the purpose of studying if the data provided by the third-party can be used instead of the measured weather data. The methodology consists of three comparison analyses: weather data, energy demand, and indoor temperature. It is applied to four actual test sites located in three different locations. The energy study is analyzed at six different temporal resolutions in order to quantify how the variation in the energy demand increases as the time resolution decreases. The results showed differences up to 38% between annual and hourly time resolutions. Thanks to a sensitivity analysis, the influence of each weather parameter on the energy demand is studied, and which sensors are worth installing in an on-site weather station are determined. In these test sites, the wind speed and outdoor temperature were the most influential weather parameters.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Dakang Wang ◽  
Yulin Zhan ◽  
Tao Yu ◽  
Yan Liu ◽  
Xiaomei Jin ◽  
...  

Using Surface Energy Balance System (SEBS) to estimate actual evapotranspiration (ET) on a regional scale generally uses gridded meteorological data by interpolating data from meteorological stations with mathematical interpolation. The heterogeneity of underlying surfaces cannot be effectively considered when interpolating meteorological station measurements to gridded data only by mathematical interpolation. This study aims to highlight the improvement of modeled meteorological data from the Weather Research and Forecasting (WRF) mesoscale numerical model which fully considers the heterogeneity of underlying surfaces over the data from mathematical interpolation method when providing accurate meteorological input for SEBS model. Meteorological data at 1 km resolution in the Hotan Oasis were simulated and then were put into SEBS model to estimate the daily actual ET. The accuracy of WRF simulation was evaluated through comparison with data collected at the meteorological station. Results found that the WRF-simulated wind speed, air temperature, relative humidity and surface pressure correlate well with the meteorological stations measurements (R2 are 0.628, 0.8242, 0.8089 and 0.8915, respectively). Comparison between ET calculated using the meteorological data simulated from the WRF (ETa-WRF) and meteorological data interpolated from measurements at met stations (ETa-STA) showed that ETa-WRF could better reflect the ET difference between different land cover, and capture the vegetation growing trend, especially in areas with sparse vegetation, where ETa-STA intends to overestimate. In addition, ETa-WRF has less noise in barren areas compared to ETa-STA. Our findings suggest that WRF can provide more reliable meteorological input for SEBS model than mathematical interpolation method.


1995 ◽  
Vol 21 ◽  
pp. 263-270 ◽  
Author(s):  
Oddur Sigurdsson ◽  
Trausti Jónsson

Glacier variations in Iceland have been recorded systematically since the 1930s at 27 different glacier termini. The advance/retreat records of non-surging glaciers show a clear relationship to climate. A change in the climate typically leads to a response at the snout within a time period of 10 years. The records of surge-type and mixed-type glaciers show variations that are unrelated to climate. However, the maximum extension of surge-type glaciers at the end of surges and the minimum extension just before a surge appear to be influenced by long-term climate changes. A strong warming in the 1920s was a turning-point in the climate of Iceland which led to a rapid retreat of most glaciers in the country in the 1930s. The summer temperature fell gradually after 1940, with a notable drop in the mid-1960s. Since about 1970, more than half of the glaciers in Iceland have been advancing. In the western part of the country, the recovery is about one-quarter of the ground lost and in the southern, central and northern parts it is about one-half. In southeastern Iceland, some of the glaciers have been stationary for about 30 years while others have advanced slightly. Glacier snow-budget index computed from meteorological data indicates that the timing of the turning-point around 1970 coincides with a minimum in the cumulative net glacier mass balance.


Author(s):  
Rolando Soler-Bientz ◽  
Fernando Go´mez-Castro ◽  
Lifter Ricalde-Cab

A computational model of a PV module was implemented to describe its thermal behaviour considering the geographical conditions of the Yucatan Peninsula, Mexico. In order to analyze the effects of non uniform illumination on the thermal profiles of a PV module, a reflecting surface was added adjacent to a PV module edge. A finite difference formulation was used to represents the thermal patterns of each PV describing the thermal conditions of each particular solar cell within the PV module. The mathematical model and the preliminary results obtained for two time instants are presented using real meteorological data to reflect the effect of the wind patterns.


2020 ◽  
Vol 12 (16) ◽  
pp. 6637
Author(s):  
Jiayu Li ◽  
Bohong Zheng ◽  
Xiao Chen ◽  
Yihua Zhou ◽  
Jifa Rao ◽  
...  

As the window-to-wall ratio, a microclimatic factor in residential districts, regulates the indoor thermal environment and implicates the energy consumption, this research was aimed at interpreting the microclimate effects of the window-to-wall ratio on the indoor thermal environment of the non-Hvac building located in the block from the view of a full year. Urban built parameters and building material parameters applied in Chenzhou were investigated, with the ENVI-met model serving as the analytical tool calculating the meteorological data recorded in the local national meteorological station. The thermal perception criterion of Chenzhou citizens was investigated, and thermal isotherms were employed to interpret the thermal perception distribution throughout the year. Analytical results revealed that the annual indoor thermal environment would deteriorate along with the growth of the window-to-wall ratio in Chenzhou, with the very hot thermal perception environment covering the months from March to October once the window-to-wall ratio outnumbered 60.00%. Furthermore, the hot and very hot thermal perception environments originated in the ranges of 0.00% to 20.00% and that of 20.00% to 40.00%, respectively. Furthermore, if the window-to-wall ratios (WWRs) outnumbered 40%, their effects on the indoor thermal perception environment would gradually decrease and be powerless once that exceeded 80%.


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

&lt;p&gt;We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;footnote: EMO = European Meteorological Observations&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document