Bio-based polyurethane aqueous dispersions

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xing Zhou ◽  
Xin Zhang ◽  
Pu Mengyuan ◽  
Xinyu He ◽  
Chaoqun Zhang

Abstract With the advances of green chemistry and nanoscience, the synthesis of green, homogenous bio-based waterborne polyurethane (WPU) dispersions with high performance have gained great attention. The presented chapter deals with the recent synthesis of waterborne polyurethane with the biomass, especially the vegetable oils including castor oil, soybean oil, sunflower oil, linseed oil, jatropha oil, and palm oil, etc. Meanwhile, the other biomasses, such as cellulose, starch, lignin, chitosan, etc., have also been illustrated with the significant application in preparing polyurethane dispersions. The idea was to highlight the main vegetable oil-based polyols, and the isocyanate, diols as chain extenders, which have supplied a class of raw materials in WPU. The conversion of biomasses into active chemical agents, which can be used in synthesis of WPU, has been discussed in detail. The main mechanisms and methods are also presented. It is suggested that the epoxide ring opening method is still the main route to transform vegetable oils to polyols. Furthermore, the nonisocyanate WPU may be one of the main trends for development of WPU using biomasses, especially the abundant vegetable oils.

RSC Advances ◽  
2014 ◽  
Vol 4 (67) ◽  
pp. 35476-35483 ◽  
Author(s):  
Ruqi Chen ◽  
Chaoqun Zhang ◽  
Michael R. Kessler

Anionic waterborne polyurethane dispersions were prepared from ring-opening epoxidized linseed oil with glycol and hydrochloric acid followed by saponification, step-growth polymerization, and ionomerization.


2012 ◽  
Vol 472-475 ◽  
pp. 89-92
Author(s):  
Xiao Li Wei ◽  
Fa Xing Zhang ◽  
De Jun Cheng

In this study , a type of compound hydrophilic chain extenders composed of a polyol containing short sulfonated side chain ,designated as DHPS and dimethylolpropanoic acid( DMPA), were used to prepare high-solid content waterborne polyurethane by self-emulsification .The effect of ratio of DHPS and DMPA on morpholog and the particle size of waterborne polyurethane were analyzed. The effect of ratio of DHPS and DMPA ,the addition of CaCl2 solution and HCl solution ,dilution on conductivity of waterborne polyurethane were investigated. The results show that the WPU dispersions exhibit the spherical particles and the characteristic of wide size distribution, the average diameter and distribution became smaller and narrower with the ratio of DHPS and DMPA increasing. With an increase of ratio of DHPS and DMPA conductivity increased. At the same time , conductivity changed with the addition of CaCl2 and HCl solutions content.


2020 ◽  
Vol 12 (2) ◽  
pp. 652 ◽  
Author(s):  
Ángel Agüero ◽  
Diego Lascano ◽  
David Garcia-Sanoguera ◽  
Octavio Fenollar ◽  
Sergio Torres-Giner

This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Cristina Dusescu ◽  
Anca Borcea ◽  
Vasile Matei ◽  
Ion Popa ◽  
Irina Gabriela Radulescu

The present paper studies biodiesel samples preparation by transesterification and compares their physical and chemical properties (biofuels prepared from different raw materials - vegetable oils: sunflower oil, crocus oil and soya bean oil) and the biodegradability degree, as well as the possibilities of the integration of such production unit in industrial diagram of auto fuels production.


2020 ◽  
Author(s):  
Chi Zhang ◽  
Jianxiong Wang ◽  
Yujie Xie ◽  
Li Wang ◽  
Lishi Yang ◽  
...  

Abstract Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Johnson K. Murage ◽  
Beatrice K. Amugune ◽  
Peter Njogu ◽  
Stanley Ndwigah

Abstract Background Neglected tropical diseases (NTDs) are a group of communicable diseases which are prevalent in the tropics affecting more than one billion people. Treatment and prevention of these infections is very costly to developing economies. Helminthiases are classified among NTDs. The communities afflicted are poor and have limited access to essential resources for their livelihood. Poor-quality drugs for NTDs may lead to death or prolonged treatment without achieving the desired results. The limited resources used in purchasing poor-quality drugs will therefore be wasted instead of being put to good use. Most of the methods available for the analysis of benzimidazole anthelminthics utilize high-performance liquid chromatography. They are therefore time consuming, require sophisticated and expensive equipment, utilize rare and expensive reagents and solvents, and call for skilled personnel. A simple, rapid, and inexpensive ultraviolet spectrophotometric method of analysis would therefore come in handy especially in the analysis of many samples as occurs during post-authorization market surveillance for quality. Results The suitable solvent for the spectroscopic analysis was established as 0.1 M methanolic HCl. The wavelength of analysis was set at 294 nm. Upon validation, the method was found to have good linearity. The range over which linearity was established was way beyond the 80 to 120% of the working concentration specified by the ICH. The method exhibited good precision. Out of 32 commercial samples analyzed, five (15.6%) did not comply with compendial specifications. Intra-brand batch variation was also observed. Out of three batches of product A002T analyzed, one did not comply with compendial specifications. Conclusion A major limitation in the analysis of benzimidazole anthelminthics is the lack of reliable, simple, rapid, and low-cost methods of analysis with high throughput. The developed method serves to fill this gap. It can be used in the analysis of raw materials and finished products. It can also be used in the establishment of the quality of products prior to registration. The method will prove very useful in post-market surveillance of quality of benzimidazole anthelminthics.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2400
Author(s):  
Leandra P. Santos ◽  
Douglas S. da Silva ◽  
Thais H. Morari ◽  
Fernando Galembeck

Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.


2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Sign in / Sign up

Export Citation Format

Share Document