scholarly journals Evaluation of Relationship between Streptococcus mutans, Dental Caries and IL-1α and IL-6

2018 ◽  
Vol 8 (1) ◽  
pp. 33-36
Author(s):  
Hossein Eslami ◽  
Firoz Pouralibaba ◽  
Roya Rezaii Sepas ◽  
Ali Zarandi

Background and aims. Streptococcus mutans is an important species in oral microflora and its components have been found to stimulate production of proinflammatory cytokines in dental caries. The aim of this study was to evaluate proinflammatory cytokines (IL-1α and IL-6) in patients with S. mutans. Materials and methods. Seventy samples were selected during pulpectomy and investigated for the presence of IL-1α and IL-6 by ELISA. The results were analyzed by t-test (α = 0.05). Results. The results showed higher mean concentrations of IL-6 and IL-1a in inflamed pulpal tissues in subjects with dental caries associated with S. mutans, compared with intact pulpal tissue samples; these higher means were statistically significant in all cases (P<0.05). Conclusion. The results of this study suggested relations between the production of IL1-a and IL-6 in dental caries caused by S. mutans.

Author(s):  
M. J. Kramer ◽  
Alan L. Coykendall

During the almost 50 years since Streptococcus mutans was first suggested as a factor in the etiology of dental caries, a multitude of studies have confirmed the cariogenic potential of this organism. Streptococci have been isolated from human and animal caries on numerous occasions and, with few exceptions, they are not typable by the Lancefield technique but are relatively homogeneous in their biochemical reactions. An analysis of the guanine-cytosine (G-C) composition of the DNA from strains K-1-R, NCTC 10449, and FA-1 by one of us (ALC) revealed significant differences and DNA-DNA reassociation experiments indicated that genetic heterogeneity existed among the three strains. The present electron microscopic study had as its objective the elucidation of any distinguishing morphological characteristics which might further characterize the respective strains.


2019 ◽  
Vol 43 (4) ◽  
pp. 252-256 ◽  
Author(s):  
Priya Subramaniam ◽  
Revathy Suresh

Objective: Dental caries is both an infectious and transmissible disease. Maternal transfer of Mutans Streptococci occurs at an early age and is important in the initiation of dental caries in children. The aim of this study was to identify certain strains of Streptococcus mutans in mother-child pairs, of children with early childhood caries. Study design: Sixty mother-child pairs of healthy children aged 18–36 months were selected. Mothers with high levels of Streptococcus mutans in their saliva and only children with ECC were included. Dental plaque samples were collected from mother-child pairs. The plaque samples were stored, transferred to the laboratory and analyzed for Streptococcus mutans strains c, f, e and k, present in mother-child pairs using Real time Polymerase Chain Reaction (PCR) technique. Data obtained was subjected to statistical analysis for level of similarity in Streptococcus mutans strains present in mother-child pairs. Results: A similar distribution of Streptococcus mutans strains c, f and k was identified in 28 mother-child pairs. Streptococcus mutans strain e was seen in 18 pairs. Conclusion: Less than 50% of mother-child pairs showed similarity in distribution of Streptococcus mutans strains.


2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Matthew De Furio ◽  
Sang Joon Ahn ◽  
Robert A. Burne ◽  
Stephen J. Hagen

ABSTRACTThe dental caries pathogenStreptococcus mutansis continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence ofS. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence inS. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction ofcomXin a progressive and cumulative fashion, whereas the response to H2O2displayed a strong threshold behavior. Low concentrations of H2O2had little effect on induction ofcomXor the bacteriocin genecipB, but expression of these genes declined sharply if extracellular H2O2exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2affect theS. mutanscompetence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others.IMPORTANCEStreptococcus mutansinhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth ofS. mutansand its important virulence-associated behaviors, such as genetic competence.S. mutanscompetence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influenceS. mutanscompetence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects onS. mutanscompetence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Lin Zeng ◽  
Robert A. Burne

ABSTRACTThe dental caries pathogenStreptococcus mutanscan ferment a variety of sugars to produce organic acids. Exposure ofS. mutansto certain nonmetabolizable carbohydrates, such as xylitol, impairs growth and can cause cell death. Recently, the presence of a sugar-phosphate stress inS. mutanswas demonstrated using a mutant lacking 1-phosphofructokinase (FruK) that accumulates fructose-1-phosphate (F-1-P). Here, we studied an operon inS. mutans,sppRA, which was highly expressed in thefruKmutant. Biochemical characterization of a recombinant SppA protein indicated that it possessed hexose-phosphate phosphohydrolase activity, with preferences for F-1-P and, to a lesser degree, fructose-6-phosphate (F-6-P). SppA activity was stimulated by Mg2+and Mn2+but inhibited by NaF. SppR, a DeoR family regulator, repressed the expression of thesppRAoperon to minimum levels in the absence of the fructose-derived metabolite F-1-P and likely also F-6-P. The accumulation of F-1-P, as a result of growth on fructose, not only inducedsppAexpression, but it significantly altered biofilm maturation through increased cell lysis and enhanced extracellular DNA release. Constitutive expression ofsppA, via a plasmid or by deletingsppR, greatly alleviated fructose-induced stress in afruKmutant, enhanced resistance to xylitol, and reversed the effects of fructose on biofilm formation. Finally, by identifying three additional putative phosphatases that are capable of promoting sugar-phosphate tolerance, we show thatS. mutansis capable of mounting a sugar-phosphate stress response by modulating the levels of certain glycolytic intermediates, functions that are interconnected with the ability of the organism to manifest key virulence behaviors.IMPORTANCEStreptococcus mutansis a major etiologic agent for dental caries, primarily due to its ability to form biofilms on the tooth surface and to convert carbohydrates into organic acids. We have discovered a two-gene operon inS. mutansthat regulates fructose metabolism by controlling the levels of fructose-1-phosphate, a potential signaling compound that affects bacterial behaviors. With fructose becoming increasingly common and abundant in the human diet, we reveal the ways that fructose may alter bacterial development, stress tolerance, and microbial ecology in the oral cavity to promote oral diseases.


Author(s):  
S. Abirami ◽  
Ravindra Kumar Jain ◽  
A. S. Smiline Girija

The study is thus aimed to assess and compare the efficacy of Herbostra oil pulling mouthwash with Chlorhexidine mouthwash in reducing plaque accumulation around orthodontic brackets. A total of 20 patients were considered in this study randomly assigned into Group I (experimental group - Herbostra oil pulling mouthwash) and Group II (reference group-0.2% Chlorhexidine mouthwash). The plaque index scores were recorded in each individual at baseline (pre) and after 3 weeks (post). Dental plaque samples were collected around the orthodontic brackets at the cervical region of maxillary upper molars and lower incisors by cotton swabbing method and evaluated for the presence of microflora. Paired sample t-test for Streptococcus mutans count showed that statistically significant difference only within the group II (p=0.000) (Chlorhexidine group) and there was no significant difference within the group I (p=0.103) (Herbostra group). Paired sample t-test for plaque index score shows statistically significant difference within the groups (0.000).Independent t test showed statistically significant difference in the levels of  Streptococcus mutans count after 3 weeks between the two groups (p=0.000) with the mean values of (2.230±0.5056), (1.080±0.3458) in group I and group II respectively. From this study we concluded that, even though there was a reduction in plaque scores and S. mutans count with Herbostra oil pulling mouthwash but it was not as effective as Chlorhexidine mouth rinse.


2018 ◽  
Vol 66 (4) ◽  
pp. 1519
Author(s):  
Mailen Ortega Cuadros ◽  
Adriana Patricia Tofiño Rivera ◽  
Luciano Jose Merini ◽  
Maria Cecilia Martinez Pabon

Dental caries is a pathology of multifactorial origin and currently natural products are an efficient alternative treatment; The work sought to evaluate the antimicrobial activity of the Cymbopogon citratus essential oil and the citral and myrcene components against Streptococcus mutans ATCC UA159, as well as their cytotoxicity on keratinocytes and human fibroblasts. The viability effect against Streptococcus mutans on biofilms was evaluated through exposure to the three substances by using the MBEC technique-high-throughput at concentrations of 1, 0.1, and 0.01 µg/mL and chlorhexidine as positive control. The cytotoxicity of the compounds was evaluated on keratinocytes and fibroblasts through the MTT reduction technique, using 0.5 mM H2O2 as cell-death control (negative control) and ethanol 1% as vehicle control (positive control). The three substances evaluated had effects on the viability of Streptococcus mutans with mortality between 74% and 96%, without significant difference among them (p > 0.393); additionally, no cytotoxicity was evident on keratinocytes and fibroblasts in a 24-h treatment. The substances evaluated showed significant antimicrobial effects; hence, these should be studied further as potential co-adjuvants to prevent dental caries that cause minor adverse effects


2020 ◽  
Vol 10 (2) ◽  
pp. 48
Author(s):  
Sri Kunarti ◽  
Aulia Ramadhani ◽  
Laskmiari Setyowati

Background: Dental caries is one of the most common infectious diseases and often occurs in the community caused by bacteria. Attached bacteria in the tooth surface for a long time will form a biofilm and will lead to demineralization characterized by damage in the structure of the tooth enamel. The bacteria that cause dental caries and can form biofilms is Streptococcus mutans. The bacteria inside biofilms are more resistant to antibacterial agents. Flavonoids in mangosteen pericarp extract can be a cleaner alternative for the anti-biofilm cavity that has properties against Streptococcus mutans. Purpose: To determine the activity of flavonoids in mangosteen pericarp extract at a certain concentration against Streptococcus mutans bacteria. Methods: This study was a laboratory experimental study with a post-test only control group design. Streptococcus mutans were diluted according to the Mc Farland dilution standard 106 in Tryptic Soy Broth (TSB) medium and put in a flexible U-bottom microtiter plate. Then it was incubated for 5x24 hours and checked using crystal violet simple staining to see the formation of biofilms. Flavonoid extract of mangosteen pericarp performed serial dilution in a concentration of 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.56%, and 0.78% was added, and the incubation process were conducted for 1x24 hours. OD (Optical Density) readings were done with a wavelength of 595 nm. Results: There was a significant difference between the test groups and the positive control group. The concentration of 100% had the anti-biofilm activity and showed the value of the highest percentage of inhibition, whilst the concentration of 0.78% showed a minimum biofilm inhibition concentration. The results were demonstrated by a statistical analysis test. Conclusion: Flavonoid extract of mangosteen pericarp at a certain concentration has anti-biofilm activity against Streptococcus mutans biofilm.


Sign in / Sign up

Export Citation Format

Share Document