scholarly journals A Review on Toxicity and Challenges in Transferability of Surface-functionalized Metallic Nanoparticles from Animal Models to Humans

2021 ◽  
Author(s):  
Muhammad Arif Asghar ◽  
Rabia Ismail Yousuf ◽  
Muhammad Harris Shoaib ◽  
Muhammad Arif Asghar ◽  
Nazish Mumtaz

The unique size and surface morphology of nanoparticles (NPs) have substantially influenced all aspects of human life, making nanotechnology a novel and promising field for various applications in biomedical sciences. Metallic NPs have gained immense interest over the last few decades due to their promising optical, electrical, and biological properties. However, the aggregation and the toxic nature of these NPs have restricted their utilization in more optimized applications. The optimum selection of biopolymers and biological macromolecules for surface functionalization of metallic NPs will significantly improve their biological applicability and biocompatibility. The present mini-review attempts to stress the overview of recent strategies involved in surface functionalization of metallic NPs, their specific biomedical applications, and comparison of their in vitro, ex vivo, and in vivo toxicities with non-functionalized metallic NPs. In addition, this review also discusses the various challenges for metallic NPs to undergo human clinical trials.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3224 ◽  
Author(s):  
Beata Kaczmarek

As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.


2019 ◽  
Vol 25 (7) ◽  
pp. 1266-1284 ◽  
Author(s):  
Sahil Dhiman ◽  
Sarabjeet Singh Sidhu ◽  
Preetkanwal Singh Bains ◽  
Marjan Bahraminasab

Purpose With technology advances, metallic implants claim to improve the quality and durability of human life. In the recent decade, Ti-6Al-4V biomaterial has been additively manufactured via selective laser melting (SLM) for orthopedic applications. This paper aims to provide state-of-the-art on mechanobiology of these fabricated components. Design/methodology/approach A literature review has been done to explore the potential of SLM fabricated Ti-6Al-4V porous lattice structures (LS) as bone substitutes. The emphasize was on the effect of process parameters and porosity on mechanical and biological properties. The papers published since 2007 were considered here. The keywords used to search were porous Ti-6Al-4V, additive manufacturing, metal three-dimensional printing, osseointegration, porous LS, SLM, in vitro and in vivo. Findings The properties of SLM porous biomaterials were compared with different human bones, and bulk SLM fabricated Ti-6Al-4V structures. The comparison was also made between LS with different unit cells to find out whether there is any particular design that can mimic the human bone functionality and enhance osseointegration. Originality/value The implant porosity plays a crucial role in mechanical and biological characteristics that relies on the optimum controlled process variables and design attributes. It was also indicated that although the mechanical strength (compressive and fatigue) of porous LS is not mostly close to natural cortical bone, elastic modulus can be adjusted to match that of cortical or cancellous bone. Porous Ti-6Al-4V provide favorable bone formation. However, the effect of design variables on biological behavior cannot be fully conclusive as few studies have been dedicated to this.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Katarzyna Drela ◽  
Luiza Stanaszek ◽  
Adam Nowakowski ◽  
Zuzanna Kuczynska ◽  
Barbara Lukomska

Mesenchymal stem cells (MSCs) are attractive candidates for cell-based tissue repair approaches. Hundreds of clinical trials using MSCs have been completed and many others are still being investigated. For most therapeutic applications, MSC propagation in vitro is often required. However, ex vivo culture condition is not fully physiological and may affect biological properties of MSCs including their regenerative potential. Moreover, both cell cryopreservation and labelling procedure prior to infusion may have the negative impact on their expected effect in vivo. The incidence of MSC transformation during in vitro culture should be also taken into consideration before using cells in stem cell therapy. In our review, we focused on different aspects of MSC propagation that might influence their regenerative properties of MSC. We also discussed the influence of different factors that might abolish MSC proliferation and differentiation as well as potential impact of stem cell senescence and aging. Despite of many positive therapeutic effects of MSC therapy, one has to be conscious about potential cell changes that could appear during manufacturing of MSCs.


2021 ◽  
Vol 14 (6) ◽  
pp. 588
Author(s):  
Chi-Han Huang ◽  
Shu-Chi Wang ◽  
I-Chen Chen ◽  
Yi-Ting Chen ◽  
Po-Len Liu ◽  
...  

Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1β production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1β, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Varun Jaiswal ◽  
Shweta Chauhan ◽  
Hae-Jeung Lee

Pachyrhizus erosus (L.) Urb. is an underutilized crop plant belonging to the Fabaceae family. In recent years, the plant received huge attention and was introduced in different countries owing to properties such as a high nutritional content, its nitrogen-fixing abilities, and different biological activities such as its antioxidant, immune modulation, anticancer, anti-diabetes, anti-osteoporosis, antiviral, and antiaging affects, among others. In this review, an attempt has been made to comprehensively compile the biological activities of the plant to provide a panoramic view of the current efforts and further directions, which may lead to the development of pharmacological applications. This information will be helpful in creating interest towards P. erosus and it may be useful in developing the plant for medical applications and/or as a functional food. More than 50 phytochemicals have been reported from the plant, which belong to different chemical classes such as triterpenoids, organic acid, flavonoids, and fatty acids. Numerous biological activities were reported from the plant through in vivo, in vitro, ex vivo, and human studies. However, well-defined clinical studies are still lacking for the establishment of any biological properties that could be further developed. Suggestions for the further development of P. erosus, according to current knowledge about the different biological properties, has also been provided.


2019 ◽  
pp. 407-430
Author(s):  
Ol'ga Aleksandrovna Vorobyeva ◽  
Darina Sergeyevna Malygina ◽  
Elizaveta Vladimirovna Grubova ◽  
Nina Borisovna Melnikova

In the review the biological properties (antitumor, antiviral, hypolipidemic, anti-inflammatory, etc.) and bioavailability of betulin and betulinic acid derivatives were discussed. These compounds are isolated from various natural sources, including birch bark (Betula, Betulaceae). The structure-activity correlation was considered for well-known betulinic acid derivatives. The perspectivity of this compounds as active pharmaceutical ingredients was demonstrated by in vitro, in vivo, and ex vivo experiments. The type of antitumor actions, generally, depends on substituents at the C-3 and C-28 carbon atoms of the lupane skeleton. It is very important that the carboxyl group of betulinic acid in the C-28 position was present. In this case, the cytotoxicity of C-3 modified derivatives is extremely high for all tested cell lines. The use of these compounds in the medical practice is complicated because they have low bioavailability and poor water solubility (from 1 to 100 µg*l-1). The main chemical syntheses for solubility improvement of betulin derivatives by grafting of hydrophilic groups were discussed. Moreover, the colloid-chemical approaches for the bioavailability improving of triterpenoids include: 1) including of these compounds in liposomes, vesicles and other nanoparticles; 2) obtaining of micelles with high-molecular compounds; 3) colloid-chemical dissolution due to physico-mechanical action; 4) inclusion complexes formation; 5) using of polymers for triterpenoids grafting. Chemical modification of betulin and betulinic acid by polar groups, such as phosphate/phosphonate, sulfate, amino acids, etc. has been shown for bioavailability improving.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 901
Author(s):  
Susan L. Lindsay ◽  
Susan C. Barnett

The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


Sign in / Sign up

Export Citation Format

Share Document