scholarly journals Identification, Characterization and Expression Profiles of Dof Transcription Factors in Common Walnut (Juglans Regia L.)

Author(s):  
Hanif Khan ◽  
Irfan Ullah ◽  
Umar Zeb ◽  
Sharif Ullah ◽  
Peng Zhao
2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2018 ◽  
Vol 11 (1-2) ◽  
pp. 49-64 ◽  
Author(s):  
Syed Muhammad Azam ◽  
Yanhui Liu ◽  
Zia Ur Rahman ◽  
Hina Ali ◽  
Cheng Yan ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1444
Author(s):  
Fan Hao ◽  
Ge Yang ◽  
Huijuan Zhou ◽  
Jiajun Yao ◽  
Deruilin Liu ◽  
...  

The transcription factor WRKY is widely distributed in the plant kingdom, playing a significant role in plant growth, development and response to stresses. Walnut is an economically important temperate tree species valued for both its edible nuts and high-quality wood, and its response to various stresses is an important factor that determines the quality of its fruit. However, in walnut trees themselves, information about the WRKY gene family remains scarce. In this paper, we perform a comprehensive study of the WRKY gene family in walnut. In total, we identified 103 WRKY genes in the common walnut that are clustered into 4 groups and distributed on 14 chromosomes. The conserved domains all contained a WRKY domain, and motif 2 was observed in most WRKYs, suggesting a high degree of conservation and similar functions within each subfamily. However, gene structure was significantly differentiated between different subfamilies. Synteny analysis indicates that there were 56 gene pairs in J. regia and A. thaliana, 76 in J. regia and J. mandshurica, 75 in J. regia and J. microcarpa, 76 in J. regia and P. trichocarpa, and 33 in J. regia and Q. robur, indicating that the WRKY gene family may come from a common ancestor. GO and KEGG enrichment analysis showed that the WRKY gene family was involved in resistance traits and the plant-pathogen interaction pathway. In anthracnose-resistant F26 fruits (AR) and anthracnose-susceptible F423 fruits (AS), transcriptome and qPCR analysis results showed that JrWRKY83, JrWRKY73 and JrWRKY74 were expressed significantly more highly in resistant cultivars, indicating that these three genes may be important contributors to stress resistance in walnut trees. Furthermore, we investigate how these three genes potentially target miRNAs and interact with proteins. JrWRKY73 was target by the miR156 family, including 12 miRNAs; this miRNA family targets WRKY genes to enhance plant defense. JrWRKY73 also interacted with the resistance gene AtMPK6, showing that it may play a crucial role in walnut defense.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nurshafika Mohd Sakeh ◽  
Siti Nor Akmar Abdullah ◽  
Mohammad Nazri Abdul Bahari ◽  
Azzreena Mohamad Azzeme ◽  
Noor Azmi Shaharuddin ◽  
...  

Abstract Background Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. Results The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. Conclusion Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guanlan Xing ◽  
Jinyu Li ◽  
Wenli Li ◽  
Sin Man Lam ◽  
Hongli Yuan ◽  
...  

Abstract Background Both APETALA2/Ethylene Responsive Factor (AP2/ERF) superfamily and R2R3-MYB family were from one of the largest diverse families of transcription factors (TFs) in plants, and played important roles in plant development and responses to various stresses. However, no systematic analysis of these TFs had been conducted in the green algae A. protothecoides heretofore. Temperature was a critical factor affecting growth and lipid metabolism of A. protothecoides. It also remained largely unknown whether these TFs would respond to temperature stress and be involved in controlling lipid metabolism process. Results Hereby, a total of six AP2 TFs, six ERF TFs and six R2R3-MYB TFs were identified and their expression profiles were also analyzed under low-temperature (LT) and high-temperature (HT) stresses. Meanwhile, differential adjustments of lipid pathways were triggered, with enhanced triacylglycerol accumulation. A co-expression network was built between these 18 TFs and 32 lipid-metabolism-related genes, suggesting intrinsic associations between TFs and the regulatory mechanism of lipid metabolism. Conclusions This study represented an important first step towards identifying functions and roles of AP2 superfamily and R2R3-MYB family in lipid adjustments and response to temperature stress. These findings would facilitate the biotechnological development in microalgae-based biofuel production and the better understanding of photosynthetic organisms’ adaptive mechanism to temperature stress.


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


2020 ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract • Background • Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. • Results • In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5,333 differentially expressed genes (DEG) with 2,534 upregulated and 2,799 downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. • Conclusions • This comparative analysis of NEC and EC transcriptomes gives new insights into the genetic underpinnings of somatic embryogenesis in cotton.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9551
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Ming Li ◽  
Pan Hu ◽  
...  

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.


Sign in / Sign up

Export Citation Format

Share Document