scholarly journals In vitro and in vivo mouse follicle development in ovaries and reaggregated ovaries

Reproduction ◽  
2019 ◽  
pp. 135-148 ◽  
Author(s):  
Belinda K M Lo ◽  
Sairah Sheikh ◽  
Suzannah A Williams

Follicle development requires complex and coordinated interactions between both the oocyte and its associated somatic cells. In ovarian dysfunction, follicle development may be abnormal due to defective somatic cell function; for example, premature ovarian insufficiency or malignancies. Replacing defective somatic cells, using the reaggregated ovary (RO) technique, may ‘rescue’ follicle development. ROs containing mature follicles have been generated when transplanted to a host mouse to develop. We have developed a RO culture technique and the aims were to determine how follicle development differed between transplanted and cultured ROs, and the influence of ovarian age (P2 vs P6). Mouse ROs were cultured for 14 days; P2 and P6 ovaries cultured as Controls. Follicle development was compared to ROs transplanted for 14 days and ovaries from P16 and P20 mice. ROs generated from either P2 or P6 exhibited similar follicle development in culture whereas in vivo follicle development was more advanced in P6 ROs. Follicles were more developed in cultured ROs than transplanted ROs. However, follicles in cultured ROs and ovaries had smaller oocytes with fewer theca and granulosa cells than in vivo counterparts. Our results demonstrate the fluidity of follicle development despite ovary dissociation and that environment is more important to basal lamina formation and theca cell development. Furthermore, follicle development within cultured ROs appears to be independent of oocyte nest breakdown and primordial follicle formation in source ovaries. Our results highlight the need for understanding follicle development in vitro, particularly in the development of the RO technique as a potential fertility treatment.

Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4533-4543 ◽  
Author(s):  
Bruce K. Campbell ◽  
M. Clinton ◽  
R. Webb

Knockout studies in mice have suggested that anti-Müllerian hormone (AMH) modulates primordial follicle recruitment and the response of growing follicles to FSH. Little is known of the physiology of AMH in monovular species, despite intense clinical interest in this factor. Using sheep as a model, we sought to investigate the functional role of AMH in modulating follicle development in monovular species. In contrast to the rodent, the results indicate that AMH does not affect the rate of primordial follicle recruitment but appears to regulate the rate at which follicles progress through the gonadotropin-responsive phase, during which it is maximally expressed. Thus, knockdown of AMH bioactivity by active immunization lead to a decline in the population of gonadotropin-responsive preantral and small antral follicles (P < 0.01) and increases in both the number of gonadotropin-dependent antral follicles (P < 0.01) and ovulation rate (P < 0.05). These in vivo findings were consistent with the results of other studies examining the pattern of expression of AMH, which was negatively correlated with aromatase (P < 0.001), and in vitro supplementation experiments, which supported an inhibitory role for AMH in modulating the response of both theca and granulosa cells to LH and FSH, respectively. The elucidation of a functional relationship between AMH and LH-stimulated thecal androgen production may be significant in terms of the etiology of common forms of anovulatory infertility in women. Furthermore, the observed increase in both the number of recruitable antral follicles and ovulatory quota in response to AMH knockdown may have therapeutic value in women who respond poorly to ovarian stimulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Siwen Zhang ◽  
Boxian Huang ◽  
Peng Su ◽  
Qiyuan Chang ◽  
Pingping Li ◽  
...  

Abstract Background Premature ovarian insufficiency (POI) is one of the major causes of infertility. We previously demonstrated that transplantation of menstrual blood-derived stromal cells (MenSCs) effectively improved ovarian function in a murine model of POI. Recent studies indicated that mesenchymal stem cell-derived exosomes were important components in tissue repair. In this study, we investigated the therapeutic effects of MenSCs-derived exosomes (MenSCs-Exos) in a rat model of POI and its mechanism in restoring ovulation. Methods Ovaries of 4.5-day-old Sprague Dawley rats (SD rats) were cultured in vitro to evaluate the effects of MenSCs-Exos exposure on early follicle development. Furthermore, POI in rats was induced by intraperitoneal administration of 4-vinylcyclohexene diepoxide (VCD). Forty-eight POI rats were randomly assigned to four groups, each receiving a different treatment: PBS, MenSCs, MenSCs-Exos, and Exo-free culture supernatant of MenSCs. Estrous cyclicity, ovarian morphology, follicle dynamics, serum hormones, pregnancy outcomes, and molecular changes were investigated. Results Exposure to MenSCs-Exos promoted the proliferation of granulosa cells in primordial and primary follicles in vitro and increased the expression of early follicle markers Deleted In Azoospermia Like (DAZL) and Forkhead Box L2 (FOXL2) while inhibiting follicle apoptosis. In vivo, MenSCs-Exos transplantation effectively promoted follicle development in the rat model of POI and restored the estrous cyclicity and serum sex hormone levels, followed by improving the live birth outcome. In addition, transplantation of MenSCs-Exos regulated the composition of the ovarian extracellular matrix and accelerated the recruitment of dormant follicles in the ovarian cortex and increased proliferation of granulosa cells in these follicles. Conclusion MenSCs-Exos markedly promoted follicle development in vitro and in vivo and restored fertility in POI rats, suggesting a restorative effect on ovarian functions. The therapeutic effect of MenSCs-Exos transplantation was sustainable, consistent with that of MenSCs transplantation. Our results suggested that MenSCs-Exos transplantation may be a promising cell-free bioresource in the treatment of POI.


Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3329-3337 ◽  
Author(s):  
Phillip Kezele ◽  
Michael K. Skinner

Abstract The assembly of the developmentally arrested primordial follicle and the subsequent transition of the primordial follicle to the primary follicle are critical processes in normal ovarian physiology that remain to be elucidated. Ovarian follicles do not proliferate and the primordial follicles present in the neonate represent the total number of gametes available to a female throughout her reproductive life. The primordial follicles are oocytes surrounded by less differentiated squamous granulosa cells and are derived from oocyte nests, and primary follicles are oocytes surrounded by a single layer of cuboidal granulosa cells that have initiated follicle development. Abnormalities in primordial follicle assembly, arrest, and development (i.e. primordial to primary follicle transition) can cause pathological conditions such as premature ovarian failure. In this study newborn rat ovaries were cultured for 7 d. The rate of primordial follicle assembly in vivo was identical with the rate in vitro. Interestingly, the rate of primordial follicle transition to the primary follicle was found to be 3 times greater in culture. This abnormal rate of primary follicle development in culture suggests the primordial follicle does not arrest in development as observed in vivo. To investigate this phenomena newborn rat ovaries were cultured in the presence of progesterone, estradiol or calf serum. Estradiol, progesterone, or calf serum significantly reduced the level of initial primordial to primary follicle transition. Approximately 60% of follicles make the primordial to primary follicle transition in control ovaries and about 30% in treated ovaries. Steroids and calf serum had no effect on the primordial to primary follicle transition in ovaries collected and cultured from postnatal 4-d-old rats, suggesting the effects observed are restricted to the initial wave of primordial to primary follicle transition. Interestingly, progesterone was also found to significantly reduce the rate of primordial follicle assembly. All viable oocytes assembled into primordial follicles in control ovaries and approximately 40% remained unassembled in progesterone-treated ovaries. Progesterone was also found to reduce primordial follicle assembly in vivo with 10% of the total follicles remaining unassembled in progesterone injected neonatal animals. Analysis of cellular apoptosis demonstrated that progesterone inhibited the coordinated oocyte apoptosis required for primordial follicle assembly. The hypothesis developed is that high levels of maternal and fetal steroids prevent premature primordial follicle assembly and primordial to primary follicle transition in the embryo. After birth steroid levels fall dramatically and the primordial follicles are free to assemble and initiate development. These observations suggest a novel role for steroids and the maternal-fetal endocrine unit in the control of ovarian primordial follicle assembly and early follicular development.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.


1982 ◽  
Vol 156 (2) ◽  
pp. 658-663 ◽  
Author(s):  
G Nabel ◽  
W J Allard ◽  
H Cantor

We previously described a cloned cell line that combines information for a unique display of cell surface antigens and specialized function similar to activated natural killer (NK) cells. In addition to conventional cellular targets such as the YAC-1 and MBL-2 lymphomas, this cloned line also lysed lipopolysaccharide-activated B lymphocytes. To determine whether some NK cells can inhibit B cell function, we tested the ability of NK-like clones to suppress Ig secretion in vitro and in vivo. These cloned cells suppressed Ig secretion when they constituted as few as 0.2% of the total cell population and inhibition did not require identity at the H-2 locus. We suggest that some NK cells might recognize non-major histocompatibility complex gene products on activated B lymphocytes and lyse these cells, and this might represent a fundamental cell-cell interaction that regulates antibody secretion by activated B cells.


1993 ◽  
Vol 13 (8) ◽  
pp. 4760-4769
Author(s):  
R J Bram ◽  
D T Hung ◽  
P K Martin ◽  
S L Schreiber ◽  
G R Crabtree

The immunosuppressants cyclosporin A (CsA) and FK506 appear to block T-cell function by inhibiting the calcium-regulated phosphatase calcineurin. While multiple distinct intracellular receptors for these drugs (cyclophilins and FKBPs, collectively immunophilins) have been characterized, the functionally active ones have not been discerned. We found that overexpression of cyclophilin A or B or FKBP12 increased T-cell sensitivity to CsA or FK506, respectively, demonstrating that they are able to mediate the inhibitory effects of their respective immunosuppressants in vivo. In contrast, cyclophilin C, FKBP13, and FKBP25 had no effect. Direct comparison of the Ki of each drug-immunophilin complex for calcineurin in vitro revealed that although calcineurin binding was clearly necessary, it was not sufficient to explain the in vivo activity of the immunophilin. Subcellular localization was shown also to play a role, since gene deletions of cyclophilins B and C which changed their intracellular locations altered their activities significantly. Cyclophilin B has been shown previously to be located within calcium-containing intracellular vesicles; its ability to mediate CsA inhibition implies that certain components of the signal transduction machinery are also spatially restricted within the cell.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document