scholarly journals Ecological Aspect of Antibiotic Batumin Synthesis by Pseudomonas batumici

2021 ◽  
Vol 83 (3) ◽  
pp. 14-23
Author(s):  
V.V. Klochko ◽  
◽  
I.I. Lipova ◽  
N.V. Chuiko ◽  
L.V. Avdeeva ◽  
...  

The species Pseudomonas batumici, isolated from the rhizosphere of eucalyptus in the humid subtropical zone, is a producer of the polyketide antibiotic batumin with highly selective activity against staphylococci. Batumin biosynthesis operon includes 28 genes or 74 151 bp. According to modern notions, the biosynthesis of energy-intensive metabolites, which probably includes batumin, is justified in the case of its multifunctionality for producers. The species P. batumici, as a representative of rhizosphere bacteria, must interact with plants and compete with the surrounding microbiota. Aim. To determine the role of batumin in the ecology of the rhizosphere producer strain P. batumici UCM B-321. Methods. The batumin producing strain P. batumici UCM B-321T was obtained from the Ukrainian Collection of Microorganisms. Antibiotic batumin was obtained by fermentation of P. batumici UCM B-321. Extraction was carried out from acidified P. batumici fermentation broth by chloroform (1:2). Chromatographic analysis of fermentation broth obtained after centrifugation was carried out by HPLC using liquid chromatograph Agilent 1200 with mass spectrometric detector Agilent G1956B. Batumin derivatives were obtained after the extraction of the fermentation broth of P. batumici using thin layer chromatography (TLC) on silica gel plates (Merck, USA) in the benzene-isopropanol system (5:1). Disc-diffusion method on phytopathogenic test-strains was used for bioautography. Biofilm formation by P. batumici strain was studied according to O’Toole by growing strain B-321 at 25 0C for 48 hours in 96-well plates on LB medium. Batumin effect upon bacterial mobility was studied using Volf and Berg method in Petri dishes with 0.5% semisolid bacterial agar. To research chemotaxis the soil strain Bacillus subtilis IMV B-7023 and the following concentrations of batumin were used: 20, 50, and 150 μg/mL. The studies were performed using Tso and Adler method. Results. Growth inhibition zones for phytopathogenic bacteria strains were the following (in mm): Pseudomonas syringae pv. syringae UCM B-1027T – 19±3, P. fluorescens IMV 8573 – 22±3, Pectobacterium carotovorum UCM B-1075T – 17±2. Activity against Xantomonas campestris pv. campestris UCM B-1049, Clavibacter michiganensis subsp. michiganensis IMV 102, Agrobacterium tumefaciens UCM B-1000 was not detected. Minimum inhibitory concentrations (MIC) in the range from 8 to 64 μg/mL for P. carotovorum UCM B-1075T, Erwinia aroidea IMV 1058, Proteus vulgaris UCM B-905 and P. fluorescens IMV 8573 are hardly comparable with the discovered against staphylococci. TLC analysis of its broth extract revealed five separate compounds with different values of retention factors: Rf1=0.42; Rf2=0.38; Rf3=0.31; Rf4=0.28; Rf5=0.25. The main component of extract was batumin, other four substances were present in minor quantities. All found substances had similar absorption maxima with the minimum differences between isomeric forms: descarbamoyl batumin-enol (Mr=505, λ=226 nm), descarbamoyl batumin-keto (Mr=505, λ=231 nm), batumin (Mr=548, λ=231 nm), batumin-enol (Mr=548, λ=228 nm) and 17-hydroxy-batumin (Mr=550, λ=229 nm). The largest inhibition zone (P. carotovorum UCM B-1075T) was on the third compound placement which represents of batumin, tiny inhibition zones were found around keto and enol form of descarbamoyl batumin. Observation of live bacterial cells in light microscope confirmed a serious disruption of motility in all these bacteria by batumin in the concentration far lower than the MIC for these organisms. Proteus actively moved in the control, but in presence of 10 μg/mL of batumin was almost no growth. The biofilm formation by P. batumici UCM B-321 was stimulated by supplementing batumin into the medium. The stimulation effect by batumin on the biofilm formation was equally strong when the compound was applied in the concentrations of 1 and 10 μg/mL. Batumin was not an attractant of the producer strain. However, in one of our experiments batumin has shown the properties of positive effector (attractant) for B. subtilis UCM B-7023 strain. Conclusion. The discovered features allow to consider the antibiotic batumin synthesized by P. batumici UCM B-321 as the essential tool for survival and competition of the producer strain in a natural habitat.

2021 ◽  
Vol 3 (2) ◽  
pp. 98
Author(s):  
Kadek Sutri Ariyanthini ◽  
Elisabeth Angelina ◽  
Kadek Nanda Banyu Permana ◽  
Fiorenza Jocelyn Thelmalina ◽  
I Gusti Ngurah Jemmy Anton Prasetia

Background: Staphylococcus aureus is a bacterium that causes bacteremia in COVID-19 pneumonitis patients. S. aureus is responsible for 80% of suppurative disease, with the skin surface as its natural habitat. So, maintaining hand hygiene during a pandemic is very important. Currently, people prefer the use of practical hand sanitizers. Most hand sanitizers contain alcohol, which has the potential to irritate. Thus, the active substance of coriander seed extract is used as a substitute for alcohol. Objective: To determine the characteristics of the gel and the concentration of coriander seed extract which gave antibacterial effect against S. aureus. Methods: The resulting hand sanitizer gel was then tested for characteristics and antibacterial activity against Staphylococcus aureus by the Kirby-Bauer diffusion method and analyzed by the One Way Anova-LSD method. Result: The results showed that preparations with concentrations of F1(2%), F2(4%), and F3(6%) respectively had inhibition zones of 1.00 ± 0.82 mm, 5.00 ± 0.41 mm, and 5 .25 ± 1.26 mm. Conclusion: Formulas 2 and 3 were able to inhibit the growth of S. aureus with moderate inhibition category. The hand sanitizer gel meets the requirements for organoleptic tests, pH, homogeneity, dispersibility, and adhesion. However, the viscosity of the preparation did not meet the requirements. Keywords: Coriander Seed Extract, Gel Hand Sanitizer, Antibacterial


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


Cosmetics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Chanun Punyoyai ◽  
Sasithorn Sirilun ◽  
Panuwan Chantawannakul ◽  
Wantida Chaiyana

This study aimed to investigate Malassezia furfur inhibitory activity of the fermented product from Ocimum sanctum and develop an antidandruff shampoo. The fermented product was obtained by the fermentation process of the aerial part of O. sanctum. Total soluble protein was detected in the fermented product with the amount of 65.32 ± 0.14 mg/100 mL, whereas there was no organic acid. The inhibitory activity against four strains of M. furfur (No. 133, 656, 6000, and 7966) of the fermented product and shampoos containing the fermented product were investigated by broth dilution and agar diffusion method, respectively. The fermented product possessed high antifungal activity with the minimum inhibitory concentrations for 50% (MIC50) of M. furfur 133, 656, 6000, and 7966 of 0.125, 0.25, 0.125, and 0.125 mg/mL, respectively. Interestingly, the antifungal activity against M. furfur 656 was comparable to that of ketoconazole. Shampoo formulation C, which was the best formulation in terms of characteristics and stability, obtained a high level of satisfaction scores in terms of hair smoothness, hair shine, ease in combing, frizz reduction, and triboelectric reduction while brushing. Additionally, the shampoo containing 2% (w/w) of the fermented product of O. sanctum also possessed inhibitory activity against M. furfur 133, 656, 6000, and 7966 with inhibition zones of 13.2 ± 1.6, 12.8 ± 1.1, 18.7 ± 0.3, and 17.0 ± 1.1 mm respectively. Therefore, this shampoo was suggested for use as an antidandruff shampoo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


2021 ◽  
Author(s):  
Ewa Jasińska ◽  
Agnieszka Bogut ◽  
Agnieszka Magryś ◽  
Alina Olender

Abstract Purpose: Determination of the association between ica genes and phenotypic biofilm formation in staphylococcal isolates involved in conjunctivitis, their antibiotic resistance as well as detection of selected virulence characteristics: adhesion to epithelial cells and in vitro cytotoxicity.Methods: The study included 26 Staphylococcus aureus (SA) and 26 Staphylococcus epidermidis (SE) isolates. The presence of icaAD genes and ica operon was determined by the PCR assay. Phenotypic biofilm formation was verified using the microtiter plate assay. Antibiotic resistance was performed using the disc diffusion method. Staphylococcal ability to attach to host cells was assessed by flow cytometry. Cytotoxicity on epithelial cells was evaluated by LDH assay.Results: The ica genes were detected in 26.9% of SE and in 42.3% of SA isolates. Only 15.3% of isolates (SE) were positive for both the icaAD and the ica operon. Phenotypically, 19.2% of SE isolates were strong biofilm producers, among which three were both icaAD- and ica operon-positive. 26.9% of SA isolates were strong biofilm producers. Methicillin resistance (MR) was detected in 34.6% of SE and 26.9% of SA isolates. 75% of MR isolates were multidrug resistant. SA isolates adhered to host cells more extensively than SE. SA isolates released higher level of LDH than SE.Conclusions: Adherence abilities were commonly observed in staphylococci associated with conjunctivitis. However, low prevalence of isolates positive for a complete and functional ica locus and low prevalence of strong biofilm producers was detected. SA adhered to a greater extent to eukaryotic cells than SE and were more cytotoxic.


2016 ◽  
Vol 31 (2) ◽  
pp. 89
Author(s):  
Tatiana Dantas Piana ◽  
Maria de Fátima Malvar Gesteira ◽  
Erica Dos Santos Carvalho ◽  
Josilene Borges Torres Lima Matos ◽  
Monica Franca ◽  
...  

Objective: To evaluate the potentiating effect of different substances in antimicrobial action of calcium hydroxide.Methods: The agar diffusion method, was used with well technique, to analyze seven substances associated to calcium hydroxide to make some pastes, they are: chlorexidine, saline, anesthetic, malvatricin, propolis, hypochlorite, paramonochlorophenol.Results: The pastes with malvatricin and paramonochlorophenol presented greater inhibition zones against Enterococcus faecalis.Conclusion: There was potentialization in antimicrobial effect of calcium hydroxide when associated to paramonochlorophenol and to malvatricin especially against Enterococcus faecalis. Low increase of the antimicrobial capacity was observed when using chlorexidine as vehicle to calcium hydroxine paste.


Author(s):  
Jamsheera Cp ◽  
Ethel Suman

Objective: The present study aimed at finding the resistance pattern of Pseudomonas aeruginosa and other Pseudomonas species isolated from various clinical specimens in the laboratory.Methods: A total of 150 isolates of different species of Pseudomonas obtained from various clinical specimens processed at the Microbiology laboratory of Kasturba Medical College, Manipal Academy of Higher Education, were taken for this study. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method and interpreted according to the CLSI guidelines. Biofilm assay was performed by modified O’Toole and Kolter method. The results were analyzed using SPSS 17.0 and Student’s unpaired t-test, Kruskal–Wallis, Mann–Whitney, ANOVA, and Chi-square test. p<0.05 was considered statistically significant.Results: Increased resistance was observed by P. aeruginosa to cefotaxime, cotrimoxazole, levofloxacin, ofloxacin, and ticarcillin clavulanate. There was also a good correlation between antibiotic resistance to aztreonam, netilmicin, and ceftazidime and biofilm production. Results of the present study, therefore, demonstrated the occurrence of resistance to various antipseudomonal agents among the biofilm-producing P. aeruginosa isolates.Conclusion: The present study may help in assessing the seriousness of drug resistance caused by biofilm formation in P. aeruginosa and devise strategies through antibiotic policies to minimize such problems.


2020 ◽  
Vol 21 (4) ◽  
pp. 290-303
Author(s):  
Z. Meziani ◽  
H. Hassaine ◽  
F. Belhachemi

Background: The significant increase in the use of implantable cardiac devices (ICDs) has been accompanied by biofilm formation and increase rate of infection on the devices. The purpose of our study is to describe the clinical and microbiological findings of infection of ICDs in the cardiology units of western Algeria hospitals. Methodology: All patients with clinical diagnosis of ICD infections or infective endocarditis upon removal of their ICDs from December 2012 to August 2014 in cardiology units of 4 Algerian hospitals were included in the study. Each element of the ICD pocket and lead was separately sonicated in sterile saline, inoculated onto Chapman and MacConkey agar plates and incubated aerobically at 37oC for colony count after 24 hours. Biochemical identification of the bacteria isolates was made by API 20E, API 20 NE and API Staph, and confirmed by Siemens Healthcare Diagnostics WalkAway® 96 Plus System. Antibiotic susceptibility testing on each isolate was performed by the disk diffusion method on Mueller Hinton agar. Biofilm formation was detected by Congo Red Agar (CRA) and Tissue Culture Plate (TCP) methods, and hydrophobicity of the bacterial cell was determined by the MATH protocol. Results: Over a period of twenty-one months, 17 ICDs were removed from patients with post-operative infections; 6 (35.3%) had early infection of ICD and 11 (64.7%) had late ICD infection. Fifty-four bacterial strains were isolated and identified, with coagulase-negative staphylococci being the predominant bacteria with 46.3% (25/54). There was no significant association between hydrophobicity and antimicrobial resistance in the 54 isolates but there is positive correlation between biofilm production and antimicrobial resistance, with the strongest biofilm producers resistant to more than one antibiotic. Four independent predictors of infection of resynchronization devices were reported; reoperation, multi-morbidity, long procedure, and ICD implantation. Conclusion: Our study is the first in Algeria to describe microbiological characteristics of ICD infection. The bacteria in the biofilm were protected, more resistant and tolerated high concentrations of antibiotics and thus played a major role in the development of ICD infections. Despite the improvements in ICD design and implantation techniques, ICD infection remains a serious challenge. Keywords: implantable cardiac devices, staphylococci, resistance, biofilm, hydrophobicity French title: Infections des dispositifs cardiaques implantables par des bactéries formant un biofilm dans les hôpitaux de l'ouest Algérien Contexte: L'augmentation significative de l'utilisation des dispositifs cardiaques implantables est un risque majeur d'augmentation du taux d'infection et donc du risque de formation d'un biofilm sur ce genre de dispositifs. L'objectif de notre étude est de décrire les résultats cliniques et microbiologiques de l'infection sur les dispositifs cardiaques implantables (DCI) dans les unités de cardiologie des hôpitaux de l'ouest Algérien. Méthodologie: Tous les patients cliniquement diagnostiqués avec une infection sur DCI, ou une endocardite infectieuse et ayant subit un retrait de leur dispositif cardiaque sont inclus dans cette étude et cela sur une période entre décembre 2012 et aout 2014 dans 4 unités de cardiologie. Chaque élément du DCI (boitier et sonde) est trempé séparément dans une solution saline stérile, ensemencé sur deux milieux de culture, un milieu de Chapman et un milieu MacConkey et incubé en aérobiose à 37°C pour la numération des colonies après 24 heures. L'identification biochimique des isolats de bactéries est effectuée par le API 20E, API 20 NE et API Staph, et confirmée par le système WalkAway® 96 Plus de Siemens Healthcare Diagnostics. Les tests de sensibilité aux antibiotiques de chaque isolat sont effectués par la méthode de diffusion des disques sur gélose de Mueller Hinton. La formation d'un biofilm est détectée par les méthodes de la gélose rouge du Congo (CRA) et de la plaque de culture tissulaire (TCP), et l'hydrophobicité de la cellule bactérienne est déterminée par le protocole MATH. Résultats: Sur une période de 21 mois, 17 DCI sont retirés de patients atteints d'infections postopératoires; 6 patients (35,3%) sont identifiés comme ayant une infection précoce sur leurs DCI et 11 patients (64,7%) ayant une infection tardive. Cinquante-quatre souches bactériennes sont isolées et identifiées, les staphylocoques à coagulase négative étant les bactéries prédominantes avec 46,3% (25/54). Il n'y a pas d'association significative entre l'hydrophobicité et la résistance aux antimicrobiens dans les 54 isolats, mais il existe une corrélation positive entre la production de biofilm et la résistance aux antimicrobiens, les plus puissants en biofilm sont résistant à plus d'un antibiotique. Quatre facteurs prédictifs indépendants d’infection des dispositifs cardiaques implantable sont retrouvés dans ce travail: ré-intervention, longue procédure, sujets multi-tarés, et implantation d’un DCI Conclusion: Notre étude est la première en Algérie à décrire les caractéristiques microbiologiques de l'infection des DCI. Les bactéries présentes dans le biofilm sont protégées, plus résistantes et tolèrent de fortes concentrations d'antibiotiques et jouent ainsi un rôle majeur dans le développement des infections par DCI. Malgré des améliorations dans les techniques de conception et d'implantation de DCI, l'infection des dispositifs cardiaques implantables reste un problème grave et très couteux. Mots-clés: dispositifs cardiaques implantables; staphylocoque; résistance; biofilm; hydrophobicité


Author(s):  
Amina Ojochide Hassan ◽  
Innocent Okonkwo Ogbonna ◽  
Victor Ugochukwu Obisike

Microbial resistance to antibiotics and biofilm formation ability of food-borne pathogens are major global health challenges. Most milk and milk products (Madara and Nono) could be vehicles for the transmission of multidrug resistant genes among any community. This study was aimed at determining the antibiotic susceptibility patterns and biofilm forming ability of some food-borne pathogens isolated from common dairy products: Madara and Nono in Makurdi metropolis. Two hundred and forty (240) samples comprising of one hundred and twenty (120) each of Madara (fresh raw milk from cow “FRM”)) and Nono (chance fermented cow milk “CFM”) were examined for the presence of pathogens. Antibiogram of bacterial isolates (Staphylococcus aureus, Escherichia coli, Shigella spp., Salmonella spp. and Klebsiella spp.) using the disc diffusion method revealed that susceptibility for Ampicillin (86.9%), Streptomycin (83.9%) and Ciprofloxacin (75.0%). Resistance was shown (26.7%) to Nalidixic acid, a commonly used antibiotic reflecting a public health concern. Most resistant isolates had a multiple antibiotics index of 0.3 (27.54%) with a least multiple antibiotics resistance index of 0.6 (0.85%). Detection of biofilm formation of isolates was done by Tube method. The study also revealed that out the total of 236 isolates tested for biofilm formation, 67 (28.4%) isolates were non or weak biofilm producers, 77 (32.6%) isolates were moderate biofilm producers and 92 (39%) isolates were strong biofilm producers. Findings of this research show high presence of a wide range of microorganisms, particularly enteric pathogens and enterotoxigenic strains of S. aureus which portrayed multidrug resistance and biofilm formation suggesting that FRM (Madara) and CRM (Nono) products might be important sources of food-borne infections and intoxication.


Author(s):  
A. O. Akintola ◽  
A. M. Azeez ◽  
B. D. Kehinde ◽  
I. C. Oladipo

Silver nano particles (AgNPs) were green synthesized using Adansonia digitata leaf extract. The synthesized silver nano particles were characterized in terms of synthesis, size, shape, morphology and capping functionalities by UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Antimicrobial activity of the synthesized silver nano particles was investigated by well diffusion method. The antibacterial activity of the nano particle was studied against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeurigunosa, Salmonella typhi and Klebsiella pneumonae while the antifungal activity was studied against Candida albicans, Aspergillus niger, Penicillum notatum and Rhizopus stolomifer. The synthesized AgNPs was active against all the studied microorganisms. Staphylococcus aureus was the most susceptible bacterium (inhibition zones ranging from 12.00 to 28.00 mm, MIC: 30 µl, MBC: 50 µl) while Aspergillus niger was the most susceptible fungi (inhibition zones ranging from 10.00 to 18.00 mm, MIC: 90 µl, MFC: 120 µl. In conclusion the synthesized silver nanoparticles was found to have antimicrobial activity against the pathogenic bacteria and fungi tested and hence has a great potential in biomedical application for the treatment of microbial infections.


Sign in / Sign up

Export Citation Format

Share Document