scholarly journals Antigen-presenting cell-derived extracellular vesicles in accelerating atherosclerosis

2021 ◽  
Vol 8 (3) ◽  
pp. 4258-4265
Author(s):  
Alexander E Berezin ◽  
Alexander A Berezin

Extracellular vesicles (EVs) are a population of heterogeneous particles that originate from the endosomal system or plasma membrane. Antigen-presenting cells (APCs) produce and release a broad spectrum of EVs involved in the pathogenesis of atherosclerosis. APC-derived EVs contain several bioactive molecules, such as non-coding RNAs, cytokines, chemokines, active proteins, immunomodulatory factors, and growth factors. The review focuses on the role of APC-derived EVs in regulating the transformation of macrophage phenotype, shaping foam cells, driving autophagy and/or inhibiting apoptosis of Th4+ cells, T regulatory cells, endothelial and smooth muscle cells (SMCs), as well as in facilitating oxidative stress in vasculature. APC-derived EVs act as triggers of angiogenesis, neovascularization and inflammation through their participation in microvascular inflammation, angiogenesis, development of atherosclerotic plaques, and modulation of their instability.

2021 ◽  
Vol 20 ◽  
pp. 153303382110378
Author(s):  
Qian Zhang ◽  
Xiangling Yang ◽  
Huanliang Liu

Metabolic reprogramming is one of the most common characteristics of cancer cells. The metabolic alterations of glucose, amino acids and lipids can support the aggressive phenotype of cancer cells. Exosomes, a kind of extracellular vesicles, participate in the intercellular communication through transferring bioactive molecules. Increasing evidence has demonstrated that enzymes, metabolites and non-coding RNAs in exosomes are responsible for the metabolic alteration of cancer cells. In this review, we summarize the past and recent findings of exosomes in altering cancer metabolism and elaborate on the role of the specific enzymes, metabolites and non-coding RNAs transferred by exosomes. Moreover, we give evidence of the role of exosomes in cancer diagnosis and treatment. Finally, we discuss the existing problems in the study and application of exosomes in cancer diagnosis and treatment.


Cells ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 167 ◽  
Author(s):  
Muhammad Nawaz ◽  
Neelam Shah ◽  
Bruna Zanetti ◽  
Marco Maugeri ◽  
Renata Silvestre ◽  
...  

Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2316
Author(s):  
Lucia Catani ◽  
Michele Cavo ◽  
Francesca Palandri

Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in “education” and “crafting” of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.


2018 ◽  
Vol 97 (8) ◽  
pp. 859-868 ◽  
Author(s):  
M. Liu ◽  
Y. Sun ◽  
Q. Zhang

Extracellular vesicles (EVs), as nanometer-scale particles, include exosomes, microvesicles, and apoptotic bodies. EVs are released by most cell types, such as bone marrow stem cells, osteoblasts, osteoclasts, and immune cells. In bone-remodeling microenvironments, EVs deliver specific proteins (e.g., tenascin C and Sema4D), microRNAs (e.g., miR-214-3p, miR-183-5p, and miR-196a), and other growth factors (e.g., bone morphogenetic protein 1 to 7 and transforming growth factor β1) to osteoblasts and regulate bone formation. In addition, EVs can deliver cytokines, such as RANK (receptor activator of nuclear factor κB) and RANKL (RANK ligand), and microRNAs, such as miR-218 and miR-148a, to modulate osteoclast differentiation during bone resorption. EVs also transfer bioactive molecules and have targeted therapies in bone-related diseases. Moreover, bioactive molecules in EVs are biomarkers in bone-related diseases. We highlight the emerging role of EVs in bone remodeling during physiologic and pathologic conditions and summarize the role of EVs in tooth development and regeneration. At the end of this review, we discuss the challenges of EV application in the treatment of bone diseases.


2020 ◽  
Vol 21 (22) ◽  
pp. 8682 ◽  
Author(s):  
Maurizio Muraca ◽  
Alfredo Cappariello

Extracellular vesicles (EVs) are complex phospholipidic structures actively released by cells. EVs are recognized as powerful means of intercellular communication since they contain many signaling molecules (including lipids, proteins, and nucleic acids). In parallel, changes in epigenetic processes can lead to changes in gene function and finally lead to disease onset and progression. Recent breakthroughs have revealed the complex roles of non-coding RNAs (microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)) in epigenetic regulation. Moreover, a substantial body of evidence demonstrates that non-coding RNAs can be shuttled among the cells and tissues via EVs, allowing non-coding RNAs to reach distant cells and exert systemic effects. Resident bone cells, including osteoclasts, osteoblasts, osteocytes, and endothelial cells, are tightly regulated by non-coding RNAs, and many of them can be exported from the cells to neighboring ones through EVs, triggering pathological conditions. For these reasons, researchers have also started to exploit EVs as a theranostic tool to address osteoporosis. In this review, we summarize some recent findings regarding the EVs’ involvement in the fine regulation of non-coding RNAs in the context of bone metabolism and osteoporosis.


2020 ◽  
Vol 9 (4) ◽  
pp. 297-304
Author(s):  
O. A. Beylerli ◽  
I. F. Gareev ◽  
V. N. Pavlov ◽  
Zhao Shiguang ◽  
Chen Xin ◽  
...  

Extensive study of extracellular vesicles began about ten years ago. Exosomes are extracellular membrane vesicles 30–100 nm in diameter secreted by various types of cells and present in most biological fluids. For a long time they were considered non-functional cellular components. However, it has been proven that they serve as a means of intercellular exchange of information. They can move bioactive molecules such as proteins, lipids, RNA, and DNA. Several studies have shown that their contents, including proteins and non-coding nucleic acids, may be of particular interest as biomarkers of diseases. The most promising of all these molecules are non-coding RNAs (ncRNAs), including microRNAs and long non-coding RNAs (lncRNAs). LncRNAs are a large group of non-coding RNAs (ncRNAs) longer than 200 nucleotides. As regulatory factors lncRNAs play an important role in complex cellular processes, such as apoptosis, growth, differentiation, proliferation, etc. Despite many advances in diagnosis and treatment (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public healthcare problems worldwide. Every day brings a better understanding of the role of exosomes in the development of cancer and metastases. Liquid biopsy has been developed as a method for the detection of cancer at an early stage. This is a series of minimally invasive tests of bodily fluids offering the advantage of real-time tracking of the tumour development. In fact, circulating exosomal lncRNAs have been found to be closely linked to processes of oncogenesis, metastasis and treatment. In this paper we review current studies into the functional role of exosomal lncRNAs in cancer and discuss their potential clinical use as diagnostic biomarkers and therapeutic targets for cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Joshua P. Nederveen ◽  
Geoffrey Warnier ◽  
Alessia Di Carlo ◽  
Mats I. Nilsson ◽  
Mark A. Tarnopolsky

The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or ‘exerkines’). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers or ‘mediators’ of intercellular communication. Given these findings, there has been a rapidly growing interest in the role of EVs in the multi-systemic, adaptive response to exercise. This review aims to summarize our current understanding of the effects of exercise on MVs and ELVs, examine their role in the exercise response and long-term adaptations, and highlight the main methodological hurdles related to blood collection, purification, and characterization of ELVs.


2020 ◽  
Vol 2 (1) ◽  
pp. 48-53
Author(s):  
Julia Christina Gross ◽  
Sabnam Parbin

The primary role of endosomal system is endocytic trafficking – to sort out internalized macromolecules and proteins to their destined cellular localizations. Incorporation of sorted cargos into multivesicular bodies (MVBs) confers specificities and determines their fates. This central point of the endosomal trafficking separates MVBs in two directions. The MVB populations fuse either with lysosomes to initiate autophagy or with plasma membrane to release small extracellular vesicles. Factors contributing to the selection of cargo and direction of trafficking incorporate the cells’ metabolic status and stress level. In this review, we discuss the molecular cues responsible for differential cargo sorting into MVBs and trafficking directions of MVBs in the endosomal network. Keywords: Exosomes; degradative MVB; secretory MVB; physiological stress; endocytic machinery; lysosome


2020 ◽  
Vol 21 (3) ◽  
pp. 1163 ◽  
Author(s):  
Alessandra Bridi ◽  
Felipe Perecin ◽  
Juliano Coelho da Silveira

Embryo–maternal crosstalk is an important event that involves many biological processes, which must occur perfectly for pregnancy success. This complex communication starts from the zygote stage within the oviduct and continues in the uterus up to the end of pregnancy. Small extracellular vesicles (EVs) are part of this communication and carry bioactive molecules such as proteins, lipids, mRNA, and miRNA. Small EVs are present in the oviductal and uterine fluid and have important functions during fertilization and early embryonic development. Embryonic cells are able to uptake oviductal and endometrium-derived small EVs. Conversely, embryo-derived EVs might modulate oviductal and uterine function. In this review, our aim is to demonstrate the role of extracellular vesicles modulating embryo–maternal interactions during early pregnancy.


Sign in / Sign up

Export Citation Format

Share Document