A SENSITIVE ELECTROCARDIOGRAPHIC SIGN IN MYOCARDITIS ASSOCIATED WITH VIRAL INFECTION

PEDIATRICS ◽  
1969 ◽  
Vol 43 (5) ◽  
pp. 846-851
Author(s):  
Ramon Rodriguez-Torres ◽  
Jer-Shoung Lin ◽  
Sumner Berkovich

The electrocardiographic signs used to diagnose myocardial disease are nonspecific. Therefore, it would seem to be of significance, that, in nine myocarditis children with proved viral infections (6 under 1 year of age), there was a constant electrical abnormality. Eight of the nine had abnormally wide spatial QRS-T angles. Recordings were made before onset of therapy and were repeated frequently during both the acute and convalescent phases of the illnesses. It was found that the return to a normal angle coincided with the disappearance of cardiac disease. Other findings were variable. The regularity with which an abnormal spatial QRS-T angle was detected in our children with viral myocarditis made this finding a valuable and dependable tool for detection and evaluation of their disease.

2014 ◽  
Vol 155 (26) ◽  
pp. 1019-1023
Author(s):  
Judit Gervain

The successful therapy of hepatitis C viral infection requires that the illness is diagnosed before the development of structural changes of the liver. Testing is stepwise consisting of screening, diagnosis, and anti-viral therapy follow-up. For these steps there are different biochemical, serological, histological and molecular biological methods available. For screening, alanine aminotransferase and anti-HCV tests are used. The diagnosis of infection is confirmed using real-time polymerase chain reaction of the viral nucleic acid. Before initiation of the therapy liver biopsy is recommended to determine the level of structural changes in the liver. Alternatively, transient elastography or blood biomarkers may be also used for this purpose. Differential diagnosis should exclude the co-existence of other viral infections and chronic hepatitis due to other origin, with special attention to the presence of autoantibodies. The outcome of the antiviral therapy and the length of treatment are mainly determined by the viral genotype. In Hungary, most patients are infected with genotype 1, subtype b. The polymorphism type that occurs in the single nucleotide located next to the interleukin 28B region in chromosome 19 and the viral polymorphism type Q80K for infection with HCV 1a serve as predictive therapeutic markers. The follow-up of therapy is based on the quantitative determination of viral nucleic acid according to national and international protocols and should use the same method and laboratory throughout the treatment of an individual patient. Orv. Hetil., 2014, 155(26), 1019–1023.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Zacharioudaki ◽  
Ippokratis Messaritakis ◽  
Emmanouil Galanakis

AbstractThe role of vitamin D in innate and adaptive immunity is recently under investigation. In this study we explored the potential association of genetic variances in vitamin D pathway and infections in infancy. Τhis prospective case–control study included infants 0–24 months with infection and age-matched controls. The single nucleotide polymorphisms of vitamin D receptor (VDR) gene (BsmI, FokI, ApaI, TaqI), vitamin D binding protein (VDBP) (Gc gene, rs7041, rs4588) and CYP27B1 (rs10877012) were genotyped by polymerase chain reaction-restriction fragment length polymorphism. In total 132 infants were enrolled, of whom 40 with bacterial and 52 with viral infection, and 40 healthy controls. As compared to controls, ΤaqI was more frequent in infants with viral infection compared to controls (p = 0.03, OR 1.96, 95% CI 1.1–3.58). Moreover, Gc1F was more frequent in the control group compared to infants with viral infection (p = 0.007, OR 2.7, 95% CI 1.3–5.6). No significant differences were found regarding the genetic profile for VDR and VDBP in infants with bacterial infection compared to the controls and also regarding CYP27B1 (rs10877012) between the studied groups. Genotypic differences suggest that vitamin D pathway might be associated with the host immune response against viral infections in infancy.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 798
Author(s):  
Mara Cirone

The response to invading pathogens such as viruses is orchestrated by pattern recognition receptor (PRR) and unfolded protein response (UPR) signaling, which intersects and converges in the activation of proinflammatory pathways and the release of cytokines and chemokines that harness the immune system in the attempt to clear microbial infection. Despite this protective intent, the inflammatory response, particularly during viral infection, may be too intense or last for too long, whereby it becomes the cause of organ or systemic diseases itself. This suggests that a better understanding of the mechanisms that regulate this complex process is needed in order to achieve better control of the side effects that inflammation may cause while potentiating its protective role. The use of specific inhibitors of the UPR sensors or PRRs or the downstream pathways activated by their signaling could offer the opportunity to reach this goal and improve the outcome of inflammation-based diseases associated with viral infections.


2021 ◽  
Vol 12 (3) ◽  
pp. 580-591
Author(s):  
Deepak Subedi ◽  
Suman Bhandari ◽  
Saurav Pantha ◽  
Uddab Poudel ◽  
Sumit Jyoti ◽  
...  

African swine fever (ASF) is a highly contagious viral infection of domestic and wild pigs with high mortality. First reported in East Africa in the early 1900s, ASF was largely controlled in domestic pigs in many countries. However, in recent years ASF outbreaks have been reported in several countries in Europe and Asia. The occurrence of ASF in China, the largest pork producer in the world, in 2018 and in India, the country that surrounds and shares open borders with Nepal, has increased the risk of ASF transmission to Nepal. Lately, the pork industry has been growing in Nepal, overcoming traditional religious and cultural biases against it. However, the emergence of viral infections such as ASF could severely affect the industry's growth and sustainability. Because there are no effective vaccines available to prevent ASF, the government should focus on preventing entry of the virus through strict quarantine measures at the borders, controls on illegal trade, and effective management practices, including biosecurity measures.


1982 ◽  
Vol 63 (2) ◽  
pp. 51-52
Author(s):  
V. A. Anokhin ◽  
A. D. Tsaregorodtsev

The aim of this work was to study the parameters of the components of the kinin blood system in children with severe forms of acute respiratory viral infections (ARVI) with neurotoxicosis syndrome. 55 children with ARVI (aged from 1 to 6 months - 14, from 6 months to 1 year - 18, from 1 to 3 years - 11, from 3 to 7 years - 12). 38 patients were admitted in the first three days of illness, 12 - on 4-5 days and 5 - at a later date. 30 children had a severe form of acute respiratory viral infection and 25 - moderate. Adenovirus infection was diagnosed in 14 patients, influenza - in 16, parainfluenza - in 7, MS-viral infection in 5, mixed viral infection - in 13. The control group consisted of 10 apparently healthy children.


2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


2018 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Li Han

AbstractThe harms of seasonal flu and global pandemic influenza have generally attracted attention. However, the currently administered influenza drugs and flu vaccines have certain limitations. Since the discovery of the small interfering RNA (siRNA) and its mediated RNA interference process, this molecule has been widely used in the study of anti-influenza viral infections because of its high specificity and strong selectivity. The results provided new concepts for the prevention and treatment of influenza virus. However, the siRNA still faces an enormous challenge despite extensive studies on this molecule. The research progress of siRNA in anti-influenza viral infection was reviewed in this study.


2019 ◽  
Author(s):  
Paulino Barragan-Iglesias ◽  
Úrzula Franco-Enzástiga ◽  
Vivekanand Jeevakumar ◽  
Andi Wangzhou ◽  
Vinicio Granados-Soto ◽  
...  

ABSTRACTOne of the first signs of viral infection is body-wide aches and pain. While this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization are well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I interferons stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENTIt is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. While specific mechanisms have been discovered for diverse bacteria and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type 1 interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling) that is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 230-245
Author(s):  
Tiziana Ciarambino ◽  
Pietro Crispino ◽  
Mauro Giordano

Introduction. Viral infections during pregnancy have always been considered to cause complications and adverse events and birth defects during pregnancy. In particular, we do not have any therapeutic or preventive tools aimed at protecting the mother and fetus during the gestational period during pandemics. Methods. The studies were identified by using the PubMed database published until 30 April 2021. The search was performed by using the following keywords: viral infection, SARS-CoV-2, COVID-19, vaccine, pregnancy, gestational period, pandemics, vaccination, complication, adverse events, drugs. Results. It has been reported that viral infections are considered to cause complications and adverse events during pregnancy. In this regard, pregnancy is associated with higher mortality rates and complications during viral infections. In fact, maternal immunization represents a unique approach to protect newborns from several infectious diseases. Conclusion. European Board and College of Obstetrics and Gynecology (EBCOG) and International public health institutions (WHO, CDC) report the recommendations about the use of vaccines during pregnancy.


Author(s):  
Ethan G Aguilar ◽  
Cordelia Dunai ◽  
Sean J. Judge ◽  
Anthony Elston Zamora ◽  
Lam T. Khuat ◽  
...  

Natural Killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class I molecules resulting in differential responses upon activation in a process called "licensing" or "arming". NK cells expressing receptors that bind self-MHC are considered licensed due to augmented effector lytic function capability compared to unlicensed subsets. However, we demonstrated unlicensed NK subsets instead positively regulate the adaptive T cell response during viral infections due to localization and cytokine production. We demonstrate here that the differential effects of the two types of NK subsets is contingent on the environment using viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) MCMV leads to a loss of licensing-associated differences as compared to mice with low-dose infection, as the unlicensed NK subset no longer localized in lymph nodes (LN), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled with the phenotypes of both human and mouse NK cells in a HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to effects of subset depletion in T-replete models, the licensed NK cell subsets still dominated anti-viral responses post-HSCT. Overall, our results highlight the intricate tuning of the NK cells and how it impacts overall immune responses with regard to licensing patterns, as it is dependent on the level of stimulation and their activation status.


Sign in / Sign up

Export Citation Format

Share Document