scholarly journals The role of long non-coding RNA (lncRNA) in the development of ovarian cancer

2020 ◽  
Vol 18 (2) ◽  
pp. e46-e56
Author(s):  
Dorota Gumiela ◽  

The aim of this study was to review research on the role of long non-coding RNA (lncRNA) in ovarian cancer. This article analyses studies on the effect of increased lncRNA expression on the size of ovarian cancer and the incidence of metastasis. The review covers a period from October 15, 2018 to August 22, 2020, and comprises 23 studies in which a total of 1,580 women with ovarian cancer participated, and an undetermined number of control groups where healthy tissue samples were collected. A review of the studies indicates that increased lncRNA expression is associated with elevated ovarian cancer size and metastatic risk. The most studied lncRNA include HOTAIR, CCAT2, GAS5, MALAT-1, UCA1. Studies assessing the expression levels of HOTAIR lncRNA and CCAT2 in normal and cancer tissue showed varying levels of expression in studies of different authors, which indicates that the expression of the same lncRNA may vary individually or is a result of study errors.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lili Yin ◽  
Yu Wang

Abstract Background/Aim Growing evidence indicates a significant role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in ovarian cancer, a frequently occurring malignant tumor in women; however, the possible effects of an interplay of NEAT1 with microRNA (miRNA or miR) let-7 g in ovarian cancer are not known. The current study aimed to investigate the role of the NEAT1/let-7 g axis in the growth, migration, and invasion of ovarian cancer cells and explore underlying mechanisms. Methods NEAT1 expression levels were examined in clinical tissue samples and cell lines. The relationships between NEAT1, let-7 g, and MEST were then analyzed. Gain- or loss-of-function approaches were used to manipulate NEAT1 and let-7 g. The effects of NEAT1 on cell proliferation, migration, invasion, and apoptosis were evaluated. Mouse xenograft models of ovarian cancer cells were established to verify the function of NEAT1 in vivo. Results NEAT1 expression was elevated while let-7 g was decreased in ovarian cancer clinical tissue samples and cell lines. A negative correlation existed between NEAT1 and let-7 g, whereby NEAT1 competitively bound to let-7 g and consequently down-regulate let-7 g expression. By this mechanism, the growth, migration, and invasion of ovarian cancer cells were stimulated. In addition, let-7 g targeted mesoderm specific transcript (MEST) and inhibited its expression, leading to promotion of adipose triglyceride lipase (ATGL) expression and inhibition of ovarian cancer cell growth, migration, and invasion. However, the effect of let-7 g was abolished by overexpression of MEST. Furthermore, silencing of NEAT1 decreased the xenograft tumor growth by decreasing MEST while up-regulating let-7 g and ATGL. Conclusions Cumulatively, the findings demonstrated that NEAT1 could promote malignant phenotypes of ovarian cancer cells by regulating the let-7 g/MEST/ATGL signaling axis. Therefore, NEAT1 can be regarded as an important molecular target and biomarker for ovarian cancer.


2021 ◽  
Vol 20 (4) ◽  
pp. 17-21
Author(s):  
S.A. Levakov ◽  
◽  
G.Ya. Azadova ◽  
A.E. Mamedova ◽  
Kh.R. Movtaeva ◽  
...  

Objective. To study the expression level of long non-coding RNAs ROR and MALAT1 in tissue samples of uterine fibroids. Patients and methods. Samples of myomatous nodes and tissues of normal myometrium in 28 women of reproductive age were examined. The analysis of the expression of long non-coding RNAs was carried out using a real-time reverse-transcription polymerase chain reaction (RT-PCR) with specific primers. Results. There was a significant decrease in the expression level of long non-coding RNA ROR and an increase in the MALAT1 expression in tissue samples of uterine fibroids relative to the control group. Conclusion. The results obtained demonstrate a possible role of long non-coding RNAs in the development of uterine fibroids and correlate with the data which we obtained for patients with endometriosis. Detecting the expression level of long non-coding RNAs can improve the existing methods for diagnosing this disease. However, further research is required to determine the clinical significance of MALAT1 and ROR, and the molecular mechanisms underlying the action of these RNAs in uterine fibroid cells. Key words: long non-coding RNAs, uterine fibroids, myomectomy, lncROR, MALAT1


2019 ◽  
Vol 57 (7) ◽  
pp. 1063-1072 ◽  
Author(s):  
Wei Zong ◽  
Wei Feng ◽  
Yun Jiang ◽  
Shaoqing Ju ◽  
Ming Cui ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to play a key role in gastric cancer (GC) tumorigenesis. However, the clinical application value of serum lncRNAs in GC has remained largely unknown. We investigated the role of a novel lncRNA named CTC-497E21.4 in the diagnosis and the prognosis of GC. Methods We focused on evaluation of lncRNA CTC-497E21.4 by real-time fluorescent quantitative polymerase chain reaction (RTFQ-PCR). The study involved following aspects: (1) confirmation of the higher lncRNA CTC-497E21.4 expression in different types of GC specimens than corresponding controls; (2) evaluation of monitoring tumor dynamics by the serum lncRNA CTC-497E21.4 assay; (3) evaluation of the prognostic value of lncRNA CTC-497E21.4 assay in GC. Results (1) The method of RTFQ-PCR detection of lncRNA CTC-497E21.4 was evaluated to have high sensitivity and specificity. (2) The expression levels of lncRNA CTC-497E21.4 were higher in GC patients compared with corresponding controls (p<0.001), and the combination of serum lncRNA CTC-497E21.4, CEA and CA19-9 could improve diagnostic sensitivity (96.36%). (3) The serum lncRNA CTC-497E21.4 expression levels were lower in postoperative samples than preoperative samples (p=0.0021) and survival curves downloaded from TCGA showed high lncRNA CTC-497E21.4 levels were associated with poor OS of GC (p=0.0351). Conclusions lncRNA CTC-497E21.4 may be a potential biomarker for the diagnosis and the prognosis of GC.


Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Ryte Rynkeviciene ◽  
Julija Simiene ◽  
Egle Strainiene ◽  
Vaidotas Stankevicius ◽  
Jurgita Usinskiene ◽  
...  

Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1382
Author(s):  
Randa Erfan ◽  
Olfat G. Shaker ◽  
Mahmoud A. F. Khalil ◽  
Yumn A. Elsabagh ◽  
Azza M. Ahmed ◽  
...  

Objective: Long non-coding RNAs (lncRNAs) and their target microRNAs were documented in multiple studies to have a significant role in different joint disorders such as rheumatoid arthritis (RA) and osteoarthritis (OA). The current work aimed to determine the potential role of lnc-PVT1 and miR-146a as promising biomarkers to distinguish between RA, OA patients, and healthy individuals. Methods: The expression levels of lnc-PVT1 and its target miR-146a in the serum were measured for three different groups, including patients with RA (40), OA patients (40), and healthy controls (HCs) (40). Participating individuals were subjected to a full history investigation and clinical examination. Blood samples were tested for ESR, RF, CBC, as well as liver and renal functions. Serum was used to detect the relative expression levels of lnc-PVT1 and miR-146a and we correlated the levels with RA and OA activity and severity signs. Results: Lnc-PVT1 expression level was greater among patients with RA compared to that of OA patients, with a fold change median of 2.62 and 0.22, respectively (p = 0.001). The miR-146a fold change was significantly demonstrated between the RA, OA, and HCs groups. There was no correlation between both biomarkers with the disease activity scales (DAS28) of RA, the Knee injury Osteoarthritis Outcome Score (KOOS), or any sign of detection of the disease severity of OA. Conclusions: lnc-PVT1 and miR-146a could be considered as promising biomarkers for the diagnosis of RA and OA and may have an important role as therapeutic targets in the future.


Author(s):  
Lihong Tan ◽  
Minghui Yu ◽  
Yaxin Li ◽  
Shanshan Xue ◽  
Jing Chen ◽  
...  

Congenital anomalies of the kidney and urinary tract (CAKUT) is a common birth defect and is the leading cause of end-stage renal disease in children. The etiology of CAKUT is complex and includes mainly genetic and environmental factors. However, these factors cannot fully explain the etiological mechanism of CAKUT. Recently, participation of long non-coding RNAs (lncRNAs) in the development of the circulatory and nervous systems was demonstrated; however, the role of lncRNAs in the development of the kidney and urinary tract system is unclear. In this study, we used the piggyBac (PB) transposon-based mutagenesis to construct a mouse with lncRNA 4933425B07Rik (Rik) PB insertion (RikPB/PB) and detected overexpression of Rik and a variety of developmental abnormalities in the urinary system after PB insertion, mainly including renal hypo/dysplasia. The number of ureteric bud (UB) branches in the RikPB/PB embryonic kidney was significantly decreased in embryonic kidney culture. Only bone morphogenetic protein 4 (Bmp4), a key molecule regulating UB branching, is significantly downregulated in RikPB/PB embryonic kidney, while the expression levels of other molecules involved in the regulation of UB branching were not significantly different according to the RNA-sequencing (RNA-seq) data, and the results were verified by quantitative real-time polymerase chain reaction (RT-PCR) and immunofluorescence assays. Besides, the expression of pSmad1/5/8, a downstream molecule of BMP4 signaling, decreased by immunofluorescence. These findings suggest that abnormal expression of Rik may cause a reduction in the UB branches by reducing the expression levels of the UB branching-related molecule Bmp4, thus leading to the development of CAKUT.


2020 ◽  
Author(s):  
Liangbao Xie ◽  
Guangfei Cui ◽  
Tao Li

Abstract Background: Accumulating evidence has shown that long non-coding RNAs (lncRNAs) serve as essential regulators in a plethora of human cancers. In this study, we analyzed the expression profile and functional role of lncRNA CBR3-AS1 in colorectal cancer (CRC).Methods: CRC tissues and paired adjacent normal tissues were obtained from 133 patients. The expression levels of CBR3-AS1 and miR-145-5p in tissues and cells were detected by RT-qPCR analysis. The proliferation, oxaliplatin resistance, apoptosis, migration, invasion and stem-like properties of CRC cells were detected by MTT assay, flow cytometry analysis, transwell assay and mammosphere formation assay, respectively. Western blot analysis was performed to detect the expression levels of relevant proteins. Dual-luciferase reporter assay and RNA immunoprecipitation assay verified the direct interaction between CBR3-AS1 and miR-145-5p in CRC.Results: High expression levels of CBR3-AS1 were found in CRC tissues and cell lines. Upregulated CBR3-AS1 was closely associated with poor prognosis and adverse clinicopathological features of CRC patients. Artificial knockdown of CBR3-AS1 markedly suppressed the proliferation, migration, invasion and stem-like properties, but promoted the apoptosis of CRC cells. Moreover, we observed that CBR3-AS1 could directly bind to miR-145-5p and negatively regulated its expression in CRC. Further experiments also demonstrated that inhibition of miR-145-5p reverted the effects of CBR3-AS1 knockdown on CRC cells. In addition, compared with the parental cells, CBR3-AS1 expression was strikingly increased in oxaliplatin-resistant CRC cells, and the oxaliplatin resistance was notably diminished by CBR3-AS1 knockdown. Conclusions: To conclude, our study suggested that CBR3-AS1 serves an oncogenic role in CRC, and may be exploited as a novel therapeutic target for CRC patients.


Sign in / Sign up

Export Citation Format

Share Document