Recycling of plastic waste materials: mechanical properties and implications for road construction

MRS Advances ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 1305-1312
Author(s):  
J. A. Panashe ◽  
Y. Danyuo

AbstractThis paper presents a recent study on recycling poly-ethylene-tetraphylate (PET), known as plastic waste material in Ghana, to wealth. Composites were produced by heating aggregates together with shredded PET plastic waste material, while bitumen was added to the plastic-coated aggregates. The composites produced were reinforced with 4.5 wt%, 9.0 wt%, 13.6 wt%, and 18.0 wt% PET. Mechanical properties of the fabricated composite samples were studied with a Universal testing machine for optimization. The work demonstrated that shredded PET plastic waste material acts as a strong binding agent for bitumen that can improve on the shelf life of the asphalt. From the results, 13.6 wt% concentration of PET was shown to experience the maximum compressive strength and flexural strength. Besides, water resistance was shown to increase with PET concentrations/weight fraction. From the data characterized 13.6 wt% of PET plastic gives the optimum plastic concentration that enhances the rheological properties of bitumen. The implications of the result are therefore discussed for the use of 13.6 wt% PET in road construction.

2011 ◽  
Vol 10 (01n02) ◽  
pp. 247-251 ◽  
Author(s):  
HARSH MEHTA ◽  
HMANTHA WANGSHUL ◽  
S. KANAGARAJ

Carbon nanotubes have been used as a reinforcing element to improve the properties of polymer matrix. An attempt has been made to investigate the mechanical behavior of carbon nanotubes–high-density polyethylene (CNT–HDPE) nanocomposites using a small punch technique. The designed punch assembly was fabricated and mounted on the Universal Testing Machine. The experimental setup was calibrated using aluminum and mild steel where the relative error was found to be within 7%. The mechanical properties of the nanocomposites, were studied by varying the weight fraction of CNT in HDPE. It was found that Young's modulus and ultimate strength of nanocomposites were increased by 37% and 36%, respectively for 1 wt% of CNTs in HDPE and they were found to increase linearly with an increase in CNT concentration. It is concluded that the small punch technique was successfully developed and tested to characterize the mechanical properties of HDPE and CNT–HDPE nanocomposites.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2011 ◽  
Vol 217-218 ◽  
pp. 181-186
Author(s):  
Shao Peng Wu ◽  
Jun Han ◽  
Xing Liu

Bitumen is widely used in road construction. Due to heavy traffic loads and environmental factors, bitumen properties will change during service life. Bitumen will age due to diffusion of oxygen and UV radiation. Repeated loading will result in decreasing strength because of fatigue. In this paper, one layer clay powder was used to modify base bitumen with different mass contents. Then the influences of ultraviolet radiation (UV) aging on the dynamic fatigue properties of the layered clay powder were evaluated by Dynamic Shear Rheomoter (DSR) and Universal Testing Machine (UTM). The ageing evaluation shows that the ageing resistance of bitumen is improved and this improvement is more notable in bitumen fatigue than mixture.


2019 ◽  
Vol 7 (5) ◽  
pp. 311-320
Author(s):  
Umurhurhu Benjamin ◽  
Uguru Hilary

The mechanical properties of eggplant fruit (cv. Bello) harvested at physiological maturity stage were evaluated in three storage periods (3d, 6d and 9d). These mechanical parameters (rupture force, rupture energy and deformation at rupture point) were measured under quasi compression loading, using the Universal Testing Machine (Testometric model). The fruit’s toughness and rupture power were calculated from the data obtained from the rupture energy and deformation at rupture point. Results obtained showed that mechanical properties of the Bello eggplant fruit exhibited strong dependence on the storage period. The results showed that as the Bello fruit stored longer, its rupture force and rupture energy decreased from 812 N to 411 N, and 5.58 Nm to 3.11 Nm respectively. While the rupture power decreased from 1.095 W to 0.353 W. On the contrary, the toughness and deformation at rupture increased from 0.270 mJ/mm3 to 0.403 mJ/mm3, and 16.99 mm to 25.22mm respectively during the 9 days storage period. The knowledge of the mechanical properties of fruits is important for their harvest and post-harvest operations, therefore, information obtained from this study will be useful in the design and development of machines for the mechanization of eggplant production.


2012 ◽  
Vol 479-481 ◽  
pp. 1145-1150
Author(s):  
Xiao Feng Xu ◽  
Wen Bin Yao ◽  
Jiu Hua Xu ◽  
Wei Zhang

In order to get the physical mechanics of gingko,hickory nut and their stalks, microprocessor controlled electronic universal testing machine (WDW-5E) was used to study the basic physical characteristics,pulling resistance and cutting resistance of their stalk in different harvest time and moisture contents. The impact of physical mechanics of cones and stalks on the picking process were analyzed and some concrete suggestions were put forward in the paper. This experimental study provides an important theory basis on designing and manufacturing different cones picking machine.


2020 ◽  
Vol 164 ◽  
pp. 14007
Author(s):  
Zalina Tuskaeva ◽  
Soslan Karyaev

A comparative analysis of concrete samples without chemical additives and three concrete samples with additives was carried out The first sample contains the liquid additive, the other two contain the powder additive. The article aims at finding out the effectiveness of additives influence on the physical and mechanical properties of concrete and the basis for the application areas of modified types of concrete. By means of laboratory tests, the physical and mechanical properties of concrete mixtures are determined. To determine the strength characteristics of concrete samples, the IM-1250M testing machine was used. The tests were carried out under the same temperature and humidity conditions. According to the results of the experiments, the samples with the multifunctional additive "D-5" showed the best characteristics of concrete, and the samples with the dolomite flour additive were the cheapest. As a result of the experimental analysis, the effects of three additives on the strength characteristics of concrete and water resistance were determined. Cemplast and D-5 additives are highly effective modifiers of concrete and mortar. They can increase the strength by 20-40% at the age of 28 days at dosages of 1.6-6% with a decrease in water-cement ratio and a decrease of cement amount by 20%. Additives highly increase the workability of the mixture, air entrainment and water resistance. While using the chemical additives an early set of the concrete design strength is observed for the construction time reducing in 7 days.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2016 ◽  
Vol 32 (6) ◽  
pp. 673-682 ◽  
Author(s):  
H.-K. Liu ◽  
Y.-C. Wang ◽  
T.-H. Huang

Abstract2-D graphene nanosheets (GNS) not only have superior mechanical properties, but stacking of GNS in composites is expected to inhibit moisture absorption. In this paper, moisture effect on tensile strength of graphene/epoxy nanocomposites is investigated. Two kinds of graphene reinforcements are used including graphene oxide (GO) and reduced graphene oxide (RGO) with reinforcement weight fraction WGO or WRGO in the range of 0.5 to 3.0wt%. A dispersion agent acetone is added in nanocomposites to enhance graphene dispersion. To evaluate moisture influence, those nanocomposites are soaked in two kinds of liquid including deionized water (DIW) and salt water (saline solution) for seven kinds of soaking periods of time including 24, 48, 72, 100, 400 hours, 30 days, and 60 days. After soaking test, diffusion coefficients of various composites are evaluated; besides tensile strengths of composites are measured by microforce testing machine. In order to correlate the strength with microstructure evolution, several techniques are adopted to analyze morphologies and functionalities of reinforcements and fracture surface of composites. They include Raman spectroscope, X-ray photoelectron spectroscope, and SEM. 2-D GNS are found to effectively enhance nanocomposites by moisture attack, and their corresponding reinforcing mechanisms are proposed.


2017 ◽  
Vol 732 ◽  
pp. 32-37 ◽  
Author(s):  
Ming He Wang ◽  
Xiao Dong Du ◽  
Yu Kun Li ◽  
Zhen Zhang ◽  
Hai Lin Su ◽  
...  

The as-cast microstructures and mechanical properties of Al-Si-Mg-Cu-Ti alloys with and without Sc were investigated by metallographic microscope, field emission scanning electron microscope, energy spectrum analysis, transmission electron microscope and universal testing machine. The result shows that adding 0.20wt.% Sc into the casting alloy can refine the grain, change the growth morphology from dendrite to fine equiaxed grain, and the morphology of eutectic Si by rough laminar structure into fine fibrous. The tensile strength of alloy with 0.20wt.% Sc is up to 304.4 MPa after T6 heat treated, which is close to that of 6061 forging aluminum alloy.


2014 ◽  
Vol 915-916 ◽  
pp. 992-995
Author(s):  
Shuang Liu ◽  
Wei Tan Cui ◽  
Hong Wu Zhang ◽  
Yong Quan Ma

The fracture reasons of 500kV high-voltage disconnectors hoops were analyzed. The fracture appearance, composition of chemical elements, metallographic, mechanical properties of the fractured hoops were investigated by ICP-AES, SEM, optical microscope, brinell hardness tester, universal testing machine. The test results that one reason is substandard products of this batch hoop. The composition of chemical elements and mechanical properties is fails to comply with applicable standards prescribed and the casting defects are found. Another reason is that the large pre-tightening force and tightens reverse order.


Sign in / Sign up

Export Citation Format

Share Document