Microstructure of a bearing-grade silicon nitride

1999 ◽  
Vol 14 (12) ◽  
pp. 4621-4629 ◽  
Author(s):  
Mingqi Liu ◽  
Sia Nemat-Nasser

The microstructure of a bearing-grade silicon nitride, prepared by pressureless sintering with Y2O3, AlN, and TiO2 additives and then hot-isostatically pressed, is examined with high-resolution transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. The material consists of large acicular β–Si3N4 grains and small equiaxial α–Si3N4 grains. An amorphous phase containing the sintering aids is observed at the two-grain boundaries and at the grain pockets. No crystalline boundary phase is identified. The α-to-β and β-to-β grain boundaries appear straight and well defined. The dominant crystalline planes observed at the β-grain boundaries are (1010) and (1120). The intergranular spacing of the two-grain boundaries (α-to-β and β-to-β) is 1.0 nm when a high-contrast boundary phase is present, and it is 0.8 nm when a low-contrast boundary phase is present, confirming that the film thickness is strongly dependent on the boundary-phase composition. The α-to-α boundaries are often curved, and the thickness of the amorphous film at these boundaries varies from 0.7 to 1.1 nm. Evidence of near-intimate contact between β-grains is also observed.

2004 ◽  
Vol 19 (2) ◽  
pp. 542-549 ◽  
Author(s):  
Chien-Cheng Liu ◽  
Jow-Lay Huang

The friction and wear behavior of Si3N4-based composites against AISI-52100 steel were investigated in the ball-on-disk mode in a nonlubrication reciprocation motion. It has been found that under the conditions used, all the ceramic components exhibited rather low friction and wear coefficients. For monolithic silicon nitride materials, high friction coefficients between 0.6 and 0.7 and wear coefficients between 1.63 × 10−8 and 1.389 × 10−6 mm3/N · m were measured. The contact load was varied from 100 to 300 N. By adding titanium nitride, the friction coefficients were reduced to a value between 0.4 and 0.5 and wear coefficients between 1.09 × 10−8 and 0.32 × 10−6 mm3/ N · m at room temperature. All materials and worn surfaces as well as wear debris were investigated by means of scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, and transmission electron microscopy (TEM) before or after the tribological tests. The TEM micrographs of wear track revealed plastic deformation through twins and cracking along grain boundary which play an important role in the fracture mechanism.


1996 ◽  
Vol 466 ◽  
Author(s):  
Haifeng Wang ◽  
Yet-Ming Chiang

ABSTRACTIt is shown that the solid state equilibrium configuration of ZnO grain boundaries saturated with Bi-doping is a nanometer-thick amorphous film. Polycrystalline ZnO samples doped with Bi2O3 were studied using high resolution transmission electron microscopy (HRTEM) and dedicated scanning transmission electron microscopy (STEM). Samples were equilibrated below the eutectic temperature (Teutectic = 740°C) and at 1 atmosphere pressure, starting from three different initial states: one was cooled from above the eutectic temperature; a second was processed entirely below the eutectic temperature; and the third was de-segregated by applying high pressure (1 GPa) followed by annealing at 1 atmospheric pressure. In all instances, ZnO grain boundaries contain an amorphous film 1.0–1.3 ran in thickness, corresponding to a Bi excess equivalent to approximately one monolayer.


2007 ◽  
Vol 555 ◽  
pp. 297-302
Author(s):  
S.H. Shim ◽  
Hyoun Woo Kim ◽  
C. Lee ◽  
D.J. Chung ◽  
S.G. Park ◽  
...  

We have obtained one-dimensional (1D) nanomaterials of tin oxide (SnO2) on silicon nitride (Si3N4)-coated Si substrates by carrying out the thermal evaporation of solid Sn powders and varying the substrate temperature in an Ar/O2 ambient gas. We analyzed the samples with scanning electron microscopy, X-ray diffraction, transmission electron microscopy and photoluminescence (PL). Reactions at a lower substrate temperature gave rise to thinner 1D structures. The obtained 1D nanomaterials were single crystalline with a tetragonal rutile structure. We proposed a vapor-solid process as the growth mechanism for SnO2 nanorods. The PL spectrum exhibited visible light emission.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Author(s):  
R H Dixon ◽  
P Kidd ◽  
P J Goodhew

Thick relaxed InGaAs layers grown epitaxially on GaAs are potentially useful substrates for growing high indium percentage strained layers. It is important that these relaxed layers are defect free and have a good surface morphology for the subsequent growth of device structures.3μm relaxed layers of InxGa1-xAs were grown on semi - insulating GaAs substrates by Molecular Beam Epitaxy (MBE), where the indium composition ranged from x=0.1 to 1.0. The interface, bulk and surface of the layers have been examined in planar view and cross-section by Transmission Electron Microscopy (TEM). The surface morphologies have been characterised by Scanning Electron Microscopy (SEM), and the bulk lattice perfection of the layers assessed using Double Crystal X-ray Diffraction (DCXRD).The surface morphology has been found to correlate with the growth conditions, with the type of defects grown-in to the layer (e.g. stacking faults, microtwins), and with the nature and density of dislocations in the interface.


2020 ◽  
Vol 14 (2) ◽  
pp. 6801-6810
Author(s):  
Rahmayeni Rahmayeni ◽  
Zulhadjri Zulhadjri ◽  
Yeni Stiadi ◽  
Agusnar Harry ◽  
Syukri Arief

Nanocomposite ZnO/ZnFe2O4 photocatalysts with different proportions of ZnFe2O4 were synthesized in organic-free media using metal nitric as precursors. The ZnO phase with hexagonal wurtzite structure and low crystallinity of ZnFe2O4 was confirmed using XRD (X-Ray diffraction). Different morphologies of the nanocomposites were obtained ranging from rice grain-like with a porous surface to homogeneous sphere-like nanoparticles as shown in Scanning Electron Microscopy (SEM) and TEM Transmission Electron Microscopy (TEM) studies. Magnetic properties measured by Visible Sampler Magnetometer (VSM) showed diamagnetic and paramagnetic behavior for the nanocomposites. Analysis with Diffuse Reflectance Spectrophotometer (DRS) UV-vis showed an increase the composition of ferrite in composites increasing its ability to absorb visible light. Photocatalytic activities of ZnO/ZnFe2O4 nanocomposites on the degradation of Rhodamine B dye reached 95.6% after 3 h under natural sunlight suggesting their suitability for sunlight driven photocatalytic applications. 


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


Sign in / Sign up

Export Citation Format

Share Document