Silicon Carbide Radiation Detectors: Progress, Limitations and Future Directions

2013 ◽  
Vol 1576 ◽  
Author(s):  
Frank H. Ruddy

ABSTRACTSilicon carbide has long been a promising material for semiconductor applications in high-temperature environments. Although silicon carbide radiation detectors were demonstrated more than a half century ago, the unavailability of high-quality materials and device manufacturing techniques hindered further development until about twenty years ago. In the late twentieth century, the development of advanced SiC crystal growth and epitaxial chemical vapor deposition methods spurred rapid development of silicon carbide charged particle, X-ray and neutron detectors. The history and status of silicon carbide radiation detectors as well as the influence of materials and device packaging limitations on future detector development will be discussed. Specific silicon carbide materials development needs will be identified.

1989 ◽  
Vol 162 ◽  
Author(s):  
J. C. Lund ◽  
F. Olschner ◽  
F. Ahmed ◽  
K. S. Shah

ABSTRACTWe report on radiation detectors fabricated from boron phosphide (BP) layers. These devices were fabricated by growing 1 to 10 μm thick layers of BP by chemical vapor deposition (CVD) on (100) oriented n-type silicon substrates. Ohmic contacts were applied to the Si (Au-Sb). Schottky barrier contacts (also Au-Sb) were applied to the BP layer. The devices were tested as radiation detectors and were found to be capable of detecting individual 5.5 MeV alpha particles. With some improvements we hope to fabricate neutron detectors from these devices, making use of the very high cross-section of boron for thermal neutrons.


2021 ◽  
Vol 253 ◽  
pp. 11003
Author(s):  
Frank H. Ruddy ◽  
Laurent Ottaviani ◽  
Abdallah Lyoussi ◽  
Christophe Destouches ◽  
Olivier Palais ◽  
...  

Silicon carbide (SiC) semiconductor is an ideal material for solid-state nuclear radiation detectors to be used in high-temperature, high-radiation environments. Such harsh environments are typically encountered in nuclear reactor measurement locations as well as high-level radioactive waste and/or “hot” dismantlingdecommissioning operations. In the present fleet of commercial nuclear reactors, temperatures in excess of 300 °C are often encountered, and temperatures up to 800 °C are anticipated in advanced reactor designs. The wide bandgap for SiC (3.27 eV) compared to more widely used semiconductors such as silicon (1.12 eV at room temperature) has allowed low-noise measurements to be carried out at temperatures up to 700 °C. The concentration of thermally induced charge carriers in SiC at 700 °C is about four orders of magnitude less than that of silicon at room temperature. Furthermore, SiC radiation detectors have been demonstrated to be much more resistant to the effects of radiation-induced damage than more conventional semiconductors such as silicon, germanium, or cadmium zinc telluride (CZT), and have been demonstrated to be operational after extremely high gamma-ray, neutron, and charged-particle doses. The purpose of the present review is to provide an updated state of the art for SiC neutron detectors and to explore their applications in harsh high-temperature, high-radiation nuclear reactor applications. Conclusions related to the current state-of-the-art of SiC neutron detectors will be presented, and specific ideal applications will be discussed.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


1999 ◽  
Vol 61-62 ◽  
pp. 172-175 ◽  
Author(s):  
A.N. Vorob’ev ◽  
Yu.E. Egorov ◽  
Yu.N. Makarov ◽  
A.I. Zhmakin ◽  
A.O. Galyukov ◽  
...  

1988 ◽  
Vol 120 ◽  
Author(s):  
J.-M. Yang ◽  
J.-C. Chou ◽  
C. V. Burkland

AbstractThe fracture behavior of a 3-D braided Nicalon fiber-reinforced SiC matrix composite processed by chemical vapor infiltration (CVI) has been investigated. The fracture toughness and thermal shock resistance under various thermomechanical loadings have been characterized. The results obtained indicate that a tough and durable structural ceramic composite can be achieved through the combination of 3-D fiber architecture and the low temperature CVI processing.


2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840002 ◽  
Author(s):  
Machhindra Koirala ◽  
Jia Woei Wu ◽  
Adam Weltz ◽  
Rajendra Dahal ◽  
Yaron Danon ◽  
...  

We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.


1991 ◽  
Vol 250 ◽  
Author(s):  
Mark D. Allendorf ◽  
Carl F. Melius

AbstractEquilibrium calculations are reported for conditions typical of silicon carbide (SiC) deposition from mixtures of silane and hydrocarbons. Included are 34 molecules containing both silicon and carbon, allowing an assessment to be made of the importance of organosilicon species (and organosilicon radicals in particular) to the deposition process. The results are used to suggest strategies for improved operation of SiC CVD processes.


2011 ◽  
Vol 480-481 ◽  
pp. 629-633
Author(s):  
Wen Teng Chang ◽  
Yu Ting Chen ◽  
Chung Chin Kuo

Five-period hydrogenated silicon carbide (SiC) multiple quantum wells with silicon dioxide (SiO2) or silicon nitride (SiN) dielectric that were synthesized by high density plasma chemical vapor deposition were studied using photoluminescence (PL) spectroscopy to understand its blue shift. Rapid thermal annealing induced significant blue shifting in the PL spectra after fluorine ion implantation due to crystallization. The thinning of the SiC causes blue shift due to the quantum confinement effect. The higher PL intensity of the amorphous SiC:H in SiO2 than in SiC/SiN may be attributed to the high number of non-radiative sites on its surface. Annealing with nitrogen may cause impurities in SiC/SiO2, thereby broadening the PL peak.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 963
Author(s):  
Caroline Höschle ◽  
Hannah C. Cubaynes ◽  
Penny J. Clarke ◽  
Grant Humphries ◽  
Alex Borowicz

The emergence of very high-resolution (VHR) satellite imagery (less than 1 m spatial resolution) is creating new opportunities within the fields of ecology and conservation biology. The advancement of sub-meter resolution imagery has provided greater confidence in the detection and identification of features on the ground, broadening the realm of possible research questions. To date, VHR imagery studies have largely focused on terrestrial environments; however, there has been incremental progress in the last two decades for using this technology to detect cetaceans. With advances in computational power and sensor resolution, the feasibility of broad-scale VHR ocean surveys using VHR satellite imagery with automated detection and classification processes has increased. Initial attempts at automated surveys are showing promising results, but further development is necessary to ensure reliability. Here we discuss the future directions in which VHR satellite imagery might be used to address urgent questions in whale conservation. We highlight the current challenges to automated detection and to extending the use of this technology to all oceans and various whale species. To achieve basin-scale marine surveys, currently not feasible with any traditional surveying methods (including boat-based and aerial surveys), future research requires a collaborative effort between biology, computation science, and engineering to overcome the present challenges to this platform’s use.


Sign in / Sign up

Export Citation Format

Share Document