Long-Term Characterization of 6H-SiC Transistor Integrated Circuit Technology Operating at 500 °C

2008 ◽  
Vol 1069 ◽  
Author(s):  
Philip Neudeck ◽  
David J. Spry ◽  
Liang-Yu Chen ◽  
Carl W. Chang ◽  
Glenn M. Beheim ◽  
...  

ABSTRACTNASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 °C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 °C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters.

2010 ◽  
pp. 26-31
Author(s):  
Wenbin Chen

There have been tremendous developments in electronic technology in the last 40 years as evidenced by the widespread availability of computers, mobile phones and electronic entertainment systems and their continued shrinking in size and cost. Much of the improvement in the performance of electronic systems can be traced to developments in Integrated Circuits (ICs) (“microchips”) which form the fundamental building blocks of modern electronics technology. Within an IC, the most important electronic component is the transistor and it is the transistor that is used to implement the operations associated with computer logic. With each generation of technology, the size of the transistors is reduced and more of them can fit on a single IC, which allows more powerful devices to be made that take up the same or even smaller space and draw less power from the battery. This trend regarding the scaling down in size of the transistors was ...


Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


2014 ◽  
Vol 28 ◽  
pp. 1460178
Author(s):  
◽  
HEIKE PROKOPH

The majority of blazars detected at very high energies (VHE; E > 100 GeV) are high-frequency-peaked BL Lac objects (HBLs). Low- and intermediate-frequency-peaked BL Lacs (LBLs/IBLs with synchrotron-peak frequencies in the infrared and optical regime) are generally more powerful, more luminous, and have a richer jet environment than HBLs. However, only a handful of these IBL and LBLs have been detected by ground-based gamma-ray telescopes, typically during high-flux states. The VERITAS array has been monitoring five known VHE LBLs/IBLs since 2009: 3C 66A, W Comae, PKS 1424+240, S5 0716+714 and BL Lacertae, with typical exposures of 5-10 hours per year. The results of these long-term observations are presented, including a bright, subhour-scale VHE flare of BL Lacertae in June 2011, the first low-state detections of 3C 66A and W Comae, and the detection and characterization of the IBL B2 1215+30.


2016 ◽  
Vol 13 (4) ◽  
pp. 143-154 ◽  
Author(s):  
Jim Holmes ◽  
A. Matthew Francis ◽  
Ian Getreu ◽  
Matthew Barlow ◽  
Affan Abbasi ◽  
...  

In the last decade, significant effort has been expended toward the development of reliable, high-temperature integrated circuits. Designs based on a variety of active semiconductor devices including junction field-effect transistors and metal-oxide-semiconductor (MOS) field-effect transistors have been pursued and demonstrated. More recently, advances in low-power complementary MOS (CMOS) devices have enabled the development of highly integrated digital, analog, and mixed-signal integrated circuits. The results of elevated temperature testing (as high as 500°C) of several building block circuits for extended periods (up to 100 h) are presented. These designs, created using the Raytheon UK's HiTSiC® CMOS process, present the densest, lowest-power integrated circuit technology capable of operating at extreme temperatures for any period. Based on these results, Venus nominal temperature (470°C) transistor models and gate-level timing models were created using parasitic extracted simulations. The complete CMOS digital gate library is suitable for logic synthesis and lays the foundation for complex integrated circuits, such as a microcontroller. A 16-bit microcontroller, based on the OpenMSP 16-bit core, is demonstrated through physical design and simulation in SiC-CMOS, with an eye for Venus as well as terrestrial applications.


Author(s):  
C. Michael Garner

Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.


2009 ◽  
Vol 615-617 ◽  
pp. 929-932 ◽  
Author(s):  
Philip G. Neudeck ◽  
David J. Spry ◽  
Liang Yu Chen ◽  
Carl W. Chang ◽  
Glenn M. Beheim ◽  
...  

This paper updates the long-term 500 °C electrical testing results from 6H-SiC junction field effect transistors (JFETs) and small integrated circuits that were introduced at ICSCRM-2007. Two packaged JFETs have now been operated in excess of 7000 hours at 500 °C with less than 10% degradation in linear I-V characteristics. Several simple digital and analog demonstration integrated circuits successfully operated for 2000-6500 hours at 500 °C before failure.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 643
Author(s):  
Sepehr Tabrizchi ◽  
Atiyeh Panahi ◽  
Fazel Sharifi ◽  
Hamid Mahmoodi ◽  
Abdel-Hameed A. Badawy

In recent decades, power consumption has become an essential factor in attracting the attention of integrated circuit (IC) designers. Multiple-valued logic (MVL) and approximate computing are some techniques that could be applied to integrated circuits to make power-efficient systems. By utilizing MVL-based circuits instead of binary logic, the information conveyed by digital signals increases, and this reduces the required interconnections and power consumption. On the other hand, approximate computing is a class of arithmetic computing used in systems where the accuracy of the computation can be traded-off for lower energy consumption. In this paper, we propose novel designs for exact and inexact ternary multipliers based on carbon-nanotube field-effect transistors (CNFETs). The unique characteristics of CNFETs make them a desirable alternative to MOSFETs. The simulations are conducted using Synopsys HSPICE. The proposed design is compared against existing ternary multipliers. The results show that the proposed exact multiplier reduces the energy consumption by up to 6 times, while the best inexact design improves energy efficiency by up to 35 time compared to the latest state-of-the-art methods. Using the imprecise multipliers for image processing provides evidence that these proposed designs are a low-power system with an acceptable error.


1998 ◽  
Vol 552 ◽  
Author(s):  
B. P. Bewlay ◽  
R. J. Grylls ◽  
H. L. Fraser

ABSTRACTComposites based on Nb-Si are attractive candidates for use as structural materials at the very high temperatures required for future aircraft engines. The composites described were produced by directional solidification, which gives a microstructure consisting of Nb dendrites with an Nb3Si-Nb eutectic. The aim of this paper is to provide a detailed characterization of precipitates observed in the Nb dendrites in both binary and higher-order alloys. The precipitates possess the Nb3Si stoichiometry, but not the stable Nb3Si structure. The precipitates form a metastable orthorhombic crystal structure which is related to the Nb matrix via a simple orientation relationship.


Sign in / Sign up

Export Citation Format

Share Document